首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Boron-containing compounds have been listed as one of environmentally hazardous substances in Japan since 2001, and known to condense in coal fly ash particles during coal combustion and coal fly ash formation in coal-fired electric power stations. So far, the authors have revealed that the speciation of boron-containing compounds in coal fly ash particles is mostly a calcium orthoborate or pyroborate. In this research, the speciation of boron compounds in standard coals and their char generated by laboratory-scale combustion test has been investigated by using a microwave-assisted acid digestion method and a Magic-Angle-Spinning Nuclear Magnetic Resonance (MAS-NMR) in order to reveal the vaporization behavior of boron in standard coals during combustion at relatively low temperature. Three isolated peaks are observed in 11B MAS-NMR spectra of standard coals, and all of them are attributed to four-oxygen-coordinated boron atom. Around 50% of boron vaporizes even though heating condition is 200 °C and O2 = 25%, and the percentage of vaporization reaches higher value than 80% at 400 °C and O2 = 25%. The remaining boron contents in ash components are relatively small, and it suggests that most of boron in standard coals exist with relatively volatile carbon contents, and they volatilize in the very early stage of coal combustion.  相似文献   

2.
Boron as an environmentally regulated substance is well known to condense in the coal fly ash generated from coal combustion plants. Since boron in the coal fly ash tends to elute into the soil easily, a technology for its stabilization or removal from fly ash is required. An acid washing process is proposed and studied as one of the candidate technologies for the removal of boron from coal fly ash. A laboratory-scale investigation is conducted on the dissolution behavior of boron in the coal fly ash in a diluted HCl solution. The dissolution of boron and alkaline species is considerably fast and exhibits a behavior different from that of aluminum and silicon, which are major components of the ash. From the kinetic model, it is expected that boron in the ash may mainly be in the form of alkaline or alkaline earth borates that are deposited on the surface of relatively large ash particles of alumino-silicate or may be precipitated as fine particles during coal combustion. This acid washing process is extended to a bench-scale plant and boron is successfully removed from the coal fly ash until its content is less than the regulation limit.  相似文献   

3.
The volatilization of fly ash has been examined by a number of techniques including TGA—DTA, Knudsen cell mass spectrometry, volatilization of neutron-activated fly ash, and X-ray fluorescence analysis of sized fly ash, low-temperature ash, and the parent coal. At low temperatures, H2O, CO2, SO2, and a number of organic compounds are the primary volatile species as determined by mass spectrometry. Analysis of the volatiles collected from activated fly ash heated to temperatures up to 1400 °C shows that Hg, Se, As, Br, and I are nearly completely volatilized. The analysis of the bulk and size fractions of fly ash, and parent coal, is consistent with this and provides evidence for volatilization of 15 elements during coal combustion. Comparison of coal and fly ash compositions also shows that significant amounts of Se are still present in the gas phase at the precipitators and more than 50 wt % of the Se is contained in the stack emissions. The results are consistent with present models for fly ash formation and trace element enrichment.  相似文献   

4.
A new methodology for removal of boron from water by coal and fly ash   总被引:1,自引:0,他引:1  
High levels of boron concentrations in water present a serious problem for domestic and agriculture utilizations.The recent EU drinking water directive defines an upper limit of 1 mgB/l. In addition, most crops are sensitive to boron levels >0.75 mg/1 in irrigation water. The boron problem is magnified by the partial (∼60%) removal of boron in reverse osmosis (RO) desalination due to the poor ionization of boric acid and the accumulation of boron in domestic sewage effluents. Moreover, high levels of boron are found in regional groundwater in some Mediterranean countries, which requires special treatment in order to meet the EU drinking water regulations. Previous attempts to remove boron employed boron-specific ion-exchange resin and several cycles of RO desalination under high pH conditions. Here, we present an alternative methodology for boron removal by using coal and fly ash as adsorbents. We conducted various column and batch experiments that explored the efficiency of boron removal from seawater and desalinated seawater using several types of coal and fly ash materials under controlled conditions (pH, liquid/solid ratio, time of reaction, pre-treatment, regeneration). We examined the effect of these factors on the boron removal capacity and the overall chemical composition of the residual seawater. The results show that the selected coal and fly ash materials are very effective in removing boron such that the rejection ratio of boron can reach 95% of the initial boron content under certain optimal conditions (e.g., pH = 9, L/S = , reaction time > 6 h). Our experiments demonstrated that use of glycerin enables regeneration of boron uptake into coal, but the boron uptake capacity of fly ash reduces after several cycles of treatment-reaction. The boron removal is associated with Mg depletion and Ca enrichment in the residual seawater and conversely with relative Mg enrichment and Ca depletion in the residual fly ash We propose that the reaction of Ca-rich fly ash with Mg-rich seawater causes co-precipitation of magnesium hydroxide in which boron is co-precipitated. The new methodology might provide an alternative technique for boron removal in areas where coal and fly ash are abundant.  相似文献   

5.
Ceramics with mullite whiskers were prepared from coal fly ash and Al2O3 raw materials, with AlF3 used as an additive. The phase structures and microstructures of the ceramics were identified via X-ray diffraction and scanning electron microscopy, respectively. The results show that pickling of coal fly ash is an effective method for enhancing the flexural strength of ceramics. Sintering temperature and AlF3 addition were also key factors influencing the creation of ideal ceramics. The ceramic made from pickled coal fly ash, 6?wt% AlF3, and sintered at 1200?°C, exhibited the highest flexural strength of 59.1?MPa, and had a bulk density of 1.32?g/cm3 and porosity of 26.8%. The results show that ceramic materials made under these conditions are ideal candidates for manufacturing ceramic proppants for the exploitation of unconventional oil and gas resources.  相似文献   

6.
《Fuel》2006,85(10-11):1418-1427
Fly ashes were collected from the electrostatic precipitator (ESPs) and/or the baghouse of seven coal-fired power plants. The fly ashes were sampled from power plants that use pulverized subbituminous and bituminous feed coals. Fly ash from bituminous coals and limestone feed coals from fluidized-bed power plant were also sampled. The fly ashes were examined for their mineralogies and elemental compositions. The fly ashes from pulverized low sulfur coals are ferrocalsialic, those from high sulfur coals are ferrosialic and the fly ashes from the fluidized bed coals are ferrocalcic. The concentrations of As, Cd, Hg, Mo, Ni, and Pb in fly ash are related to the S content of the coal. Generally, those feed coals with a high S content contain higher concentrations of these elements. The concentrations of these elements are also greater for baghouse fly ash compared to ESP fly ash for the same station. The S content of fly ash from high S coal is 0.1% for pulverized ESP fly ash and 7% for baghouse fly ash from the fluidized bed, indicating that most of the S is captured by fly ash in the fluidized bed. The baghouse fly ash from the fluidized bed has the highest content of Cd, Hg, Mo, Pb, and Se, indicating that CaO, for the most part, captures them. Arsenic is captured by calcium-bearing minerals and hematite, and forms a stable complex of calcium or a transition metal of iron hydroxy arsenate hydrate [(M2+)2Fe3(AsO4)3(OH)4·10H2O] in the fly ash. Most elements in fly ash have enrichment indices of greater than 0.7 indicating that they are more enriched in the fly ash than in the feed coal, except for Hg in all ESP ashes. Mercury is an exception; it is more enriched in baghouse fly ash compared to ESP. Fly ash collected from a station equipped with hot side ESP has a lower concentration of Hg compared to stations equipped with cold side ESP using feed coals of similar rank and mercury content. Fly ash particles from fluidized bed coal are angular and subangular with cores of quartz and calcite. The quartz core is encased in layer(s) of calcium-rich aluminosilicates, and/or calcium/iron oxides. The calcite core is usually encased in an anhydrite shell.  相似文献   

7.
Fly ash quality before and after conversion to low-NOx combustion was investigated at a 150 MW unit in Kentucky burning a blend of western United States bituminous coal and Powder River Basin, WY, subbituminous coal. The fly ash collection system is divided into mechanical and baghouse collection systems. The mechanical collection hoppers, capturing fly ash from a hotter portion of the flue gas stream than the baghouse hoppers, tends to capture a coarser, carbon-rich fraction of the fly ash than the baghouse hoppers. The latter was particularly the case for the pre-conversion fly ash. The post-conversion fly ash had significantly more carbon than the pre-conversion ash. The post-conversion baghouse has abundant coarse, thin-walled carbon, suggesting that this particular carbon form is an artifact of the lower post-conversion combustion temperatures.  相似文献   

8.
《分离科学与技术》2012,47(1):105-115
In the present study for the purpose of removal of boron from water by adsorption using adsorbents like fly ash, natural zeolite, and demineralized lignite was investigated. Boron in water was removed with fly ash, zeolite, and demineralized lignite with different capacities. Ninety-four percent boron was removed using fly ash. Batch experiments were conducted to test the removal capacity, to obtain adsorption isotherms, thermodynamic and kinetic parameters. Boron removal by all adsorbents was affected by pH of solution; maximum adsorption was achieved at pH 10. Adsorption of boron on fly ash was investigated by the Langmuir, Freundlich, and the Dubinin-Radushkevich models. Standard entropy and enthalpy changes of adsorption of boron on fly ash were, ΔS 0  = ?0.69 kJ/mol K and ΔH 0  = ?215.34 kJ/mol, respectively. The negative value of ΔS 0 indicated decreased randomness at the solid/solution interface during the adsorption boron on the fly ash sample. Negative values of ΔH 0 showed the exothermic nature of the process. The negative values of ΔG 0 implied that the adsorption of boron on fly ash samples was spontaneous. Adsorption of boron on fly ash occurred with a pseudo-second order kinetic model, and intraparticle diffusion of boron species had also some effect in adsorption kinetics.  相似文献   

9.
Eleonora So?o  Jan Kalembkiewicz 《Fuel》2009,88(8):1513-6646
Coal fly ash, which is a source of metals emission to environment, was researched. Investigations on Cr chemical fractions and their environmental mobility in ash-solution system were carried out. In order to obtain results repeatedly, the conditions of sequential extraction of Cr from coal fly ash were optimized. It was found that Cr in coal fly ash occurs in the following fractions (mg kg−1): exchangeable (2.5), associated to carbonates (4.0), associated to organic matter and sulfides (8.5), associated to Fe-Mn oxides (16.0), and residual (41.6). Mobility fractions of Cr contain 8.2% of its total concentration in the fly ash in environmental conditions. The obtained results indicate that coal fly ash is a source of environmental contamination by Cr especially, in soils where its utilization is inadequate.  相似文献   

10.
ABSTRACT

This study presents the application of fly ash from brown coal and biomass burning power plant as a sorbent for the removal of boron ions from an aqueous solution. The adsorption process efficiency depended on the parameters, such as adsorbent dosage, pH, temperature, agitation time and initial boron concentration. The experimental data fitted well with the Freundlich isotherm model and the maximum capacity was found to be 16.14 mg g?1. The adsorption kinetics followed the pseudo-second-order model. Also, the intra-particle diffusion model parameters were calculated. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), entropy (ΔS°) revealed on exothermic nature of boron adsorption onto the fly ash.  相似文献   

11.
Çan, Çatala?z?, Seyitömer and Af?in-Elbistan thermal power plant fly ashes were used to investigate the sintering behavior of fly ashes. For this purpose, coal fly ash samples were sintered to form ceramic materials without the addition of any inorganic additives or organic binders. In sample preparation, 1.5 g of fly ash was mixed in a mortar with water. Fly ash samples were uniaxially pressed at 40 MPa to achieve a reasonable strength. The powder compacts were sintered in air. X-ray diffraction analysis revealed that quartz (SiO2), mullite (Al6Si2O13), anorthite (CaAl2Si2O8), gehlenite (Ca2Al2SiO7) and wollastonite (CaSiO3) phases occurred in the sintered samples. Scanning electron microscopy investigations were conducted on the sintered coal fly ash samples to investigate the microstructural evolution of the samples. Different crystalline structures were observed in the sintered samples. The sintered samples were obtained having high density, low water adsorption and porosity values. Higher Al2O3 + SiO2 contents caused to better properties in the sintered materials.  相似文献   

12.
《Fuel》2007,86(7-8):1008-1020
Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more importantly, by reaction with Al and Si in the fly ash. About 70–80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium and magnesium in lignite reacts with silica so it is not available for reaction with potassium chloride. Reduction of Cl and increase of S in the deposits compared to the fly ashes could be attributed to sulphation of the deposits.  相似文献   

13.
Preparation of zeolitic adsorbents from waste coal fly ash   总被引:1,自引:0,他引:1  
Power plants burning coal generate a large amount of fly ash as waste matter. The objective of this study is to produce zeolitic adsorbents that possesses high adsorptive capacity for toxic cations. The sample was first pretreated with a High Intensity Magnetic Separator for the removal of iron and magnetic materials (mainly Fe2O3 and TiO2). The zeolitic adsorbents were prepared under the various conditions of NaOH concentration (1–5 N), reaction time from 3 to 96 hours and at the various temperatures of 60, 80 and 100°C. The results of the experiment showed that the coal fly ash should be synthesized with 4 N NaOH for 48 hours at 100°C in order to have good adsorptive capacity. The zeolitic adsorbents showed higher cation exchange capacity values than the natural zeolite in removing NH 4 + , Pb2+, Ca2+and Cd2+ions.  相似文献   

14.
In order to more easily separate TiO2 photocatalyst from treated wastewater, TiO2 photocatalyst is immobilized on coal fly ash by precipitation method. The titanium hydroxide precipitated on coal fly ash by neutralization of titanium chloride is transformed into titanium dioxide by heat treatment in the temperature range of 300–700 ‡C. The crystalline structure of the titanium dioxide shows anatase type in all ranges of heat treatment temperature. The crystal size of anatase increases with increasing heat treatment temperature, with the drawback being the lower removal ability of NO gas. When the coal fly ash coated with 10 wt% of TiO2 was calcined at 300 and 400 ‡C for 2 hrs, the average crystal size of anatase appeared about 9 nm, and the removal rates of NO gas were 63 and 67.5%, respectively. The major iron oxide, existing in coal fly ash as impurity, is magnetite (Fe3O4). Phase transformation of magnetite into hematite (Fe2O3) by heat treatment improves the removal rate of NO gas for TiO2-coated coal fly ash.  相似文献   

15.
An arsenic-rich (As = 55 ppm) bituminous feed coal from the Black Warrior Basin, Alabama and its derivative fly ash (As = 230 ppm) were selected for detailed investigation of arsenic residence and chemical forms. Analytical techniques included microbeam analysis, selective extraction, and As K-edge X-ray absorption fine-structure (XAFS) spectroscopy. Most As in the coal is contained in a generation of As-bearing pyrite (FeS2) that formed in response to epigenetic introduction of hydrothermal fluids. XAFS results indicate that approximately 50% of the As in the coal sample occurs as the oxidized As(V) species, possibly the result of incipient oxidation of coal and pyrite prior to our analysis. Combustion of pyrite and host coal produced fly ash in which 95% of As is present as As(V). Selective extraction of the fly ash with a carbonate buffer solution (pH = 10) removed 49% of the As. A different extraction with an HCl-NH2OH mixture, which targets amorphous and poorly crystalline iron oxides, dissolved 79% of the As. XAFS spectroscopy of this highly acidic (pH = 3.0) fly ash indicated that As is associated with some combination of iron oxide, oxyhydroxide, or sulfate. In contrast, a highly alkaline (pH = 12.7) fly ash from Turkey shows most As associated with a phase similar to calcium orthoarsenate (Ca3(AsO4)2). The combined XAFS results indicate that fly ash acidity, which is determined by coal composition and combustion conditions, may serve to predict arsenic speciation in fly ash.  相似文献   

16.
《Fuel》1986,65(3):449-450
The type and size of unburnt char particles in 13 fly ash samples were determined microscopically. The samples were collected from a power station fired from an inertinite-rich coal seam. The carbon content of the ash samples ranged from 2.3 to 25.3 wt%. When the carbon content in a fly ash was high, the proportion of coarse char particles, in particular > 106 μm3 particles, was also high. These results suggest that the size distribution of the feedstock coal has a major effect on the carbon content of the fly ash.  相似文献   

17.
Coal pulverizers play an important role in the functioning and performance of a PC-fired boiler. The main functions of a pulverizer are crushing, drying and separating the fine coal particles toward combustion in the furnace. It is a common experience that mill outlet pipes have unequal coal flow in each pipe and contain some coarse particles. Unequal coal flow translates into unequal air-to-fuel ratio in the burner, deviating from the design value and thus increasing unburned carbon in fly ash, NOx and CO. Coarser particles at the mill outlet originate from poor separation and decrease the unit efficiency. In addition, coarser particles reduce burner stability at low load. Air flow distribution at the mill throat, as well as inside the mill, significantly influences the mill performance in terms of separation, drying, coal/air flow uniformity at the mill outlet, wear patterns and mill safety. In the present work, a three-dimensional computational fluid dynamics (CFD) model of the MPS Roll Wheel pulverizer at Alliant Energy's Edgewater Unit 5 has been developed. The Eulerian-Lagrangian simulation approach in conjunction with the coal drying model in Fluent, a commercial CFD software package, has been used to conduct the simulation. Coal drying not only changes the primary air temperature but it also increases the primary air flow rate due to mass transfer from coal. Results of the simulation showed that a non-uniform airflow distribution near the throat contributes significantly to non-uniform air-coal flow at the outlet. It was shown that uniform velocity at the throat improves the air and coal flow distribution at the outlet pipes. A newly developed coal mill model provides a valuable tool that can be used to improve the pulverizer design and optimize unit operation. For example, reject coal rate, which is controlled by the air flow near the mill throat, can be reduced. The model can also be used to further aid in identifying and reducing high temperature or coal-rich areas where mill fires are most likely to start.  相似文献   

18.
Sunflower-seed hulls (SSH) represent a source of combustible biomass characterised by high contents of potassium and phosphorus and a low silica content. The relatively high net calorific value of 20 MJ/kg d.m. is mainly influenced by the lignin content. Potassium and phosphorus are very important elements in biomass combustion for fuel, influencing slagging and fouling problems. Mixtures with different ratios of brown coal and sunflower-seed hulls (0-22% SSH) were co-fired in the Olomouc power plant. The behaviour of elements in the fly ash and the bottom ash (SiO2, Al2O3, K2O, P2O5, Zn, Cu and Cd) varied in relation to the amount of SSH added to the coal. The fly ash from the co-firing of 20% SSH with coal had a high content of water-leachable sulphates and total dissolved solids. The utilisation of fly ash in civil engineering (land reclamation) should fulfil criteria established by the Council Decision 2003/33/EC for non-hazardous waste. To ensure that the required water-leachable sulphate concentrations are within regulatory limits the fuel may contain a maximum of 14% SSH.  相似文献   

19.
Co-combustion of coal with sewage sludge was carried out in laboratory-scaled drop tube furnace to understand the interaction between different fuels. The combustion conditions were selected as follows: the raw material feeding rate was 0.2-0.3 g/min, temperature was 1200 °C, the atmosphere of 10% O2 and N2 being balance was used to guarantee an air ratio of 1.5, and the residence time varied from 0.6 to 2.4 s. The coal/sewage sludge is kept at 50:50 (wt% to wt%), four fuel pairs were selected with respect to the mineral association within individual fuel. The results showed the obvious interaction between coal and sewage sludge during their co-combustion. For the carbon conversion, the devolatilization of mixing fuel occurred quickly; the combustion of both char and evolved volatile progressed almost completely. As a result, the unburnt carbon was almost zero in the fly ash. In addition, the evolution of both mineral and PM varied with the association of minerals in raw fuels. For both coal and sewage sludge rich in included minerals, they combusted separately in the furnace, less interaction occurred accordingly. Conversely, for both them rich in excluded minerals, the minerals reacted with each other to form much agglomeration, and therefore, the particle size of the fly ash was increased, while the amount of PM was decreased, which changed as the coarse fly ash particles. Finally, for the case of coal rich in excluded mineral and sludge rich in included mineral, their co-combustion led to the interaction of their minerals. As a result, more the fine particles were formed, which in part changed into PM. For the vaporized trace elements, they were adsorbed by the melt CaPO4/Al-Si in the ash and accordingly, their contents in the particulate matter were reduced whereas their particle size distribution shifted to the large value.  相似文献   

20.
The chemical speciation of iron in combustion-derived ash is an important factor in determining the likelihood of ash deposit formation and buildup. In this study, the transformation of iron were examined in ash produced by the combustion of a beneficiated Pittsburgh no. 8 bituminous coal under a range of oxygen concentration ranging from 0% to 100% O2 in a drop tube furnace. The speciation of iron was found to be strongly dependent upon ash particle size, with the lowest fraction of glassy state iron found in the largest ash particles. Both the fraction of iron in a glassy state and the ratio of Fe+++(glass)/Fe++(glass) increased with increasing O2 concentration in the furnace. For the submicron ash particles, about 10% of the iron is formed by direct disintegration of pyrite and pyrrhotite during combustion. Most of the iron is however, present as Fe+++(glass), which results from the vaporization, recondensation, and coagulation of iron and silicates. For ash particles with size between 1 and 9 microns, most of the ash derives from mineral coalescence within the reacting char, with additional contribution from extraneous minerals. The fraction of glassy iron in those particles is high because of the high contact probability between iron melt and silicates. For the coarsest ash particles with size greater than 9 microns, extraneous pyrite is changed into hematite, and iron in the core of the char is changed into a glassy state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号