首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel   总被引:1,自引:0,他引:1  
This paper deals with the hydroprocessing of rapeseed oil representing a perspective technological way for production of biocomponents in diesel fuel range. Rapeseed oil was hydroprocessed at various temperatures (260-340 °C) under a pressure of 7 MPa in a laboratory flow reactor. Three Ni-Mo/alumina hydrorefining catalysts were used. Reaction products were analyzed using several gas-chromatographic methods. Reaction products contained water, hydrogen-rich gas and organic liquid product (OLP). The main components of OLP were identified as C17 and C18n-alkanes and i-alkanes. At a low reaction temperature, OLP contained also free fatty acids and triglycerides. At reaction temperatures higher than 310 °C, OLP contained only hydrocarbons of the same nature as hydrocarbons present in diesel fuel. Influence of reaction temperature and catalyst on the composition of reaction products is discussed.  相似文献   

2.
Fuel properties of hydroprocessed rapeseed oil   总被引:1,自引:0,他引:1  
This paper deals with the hydroprocessing of rapeseed oil as a source of hydrocarbon-based biodiesel. Rapeseed oil was hydroprocessed in a laboratory flow reactor under four combinations of reaction conditions at temperatures 310 and 360 °C and under hydrogen pressure of 7 and 15 MPa. A commercial hydrotreating Ni-Mo/alumina catalyst was used. Reaction products contained mostly n-heptadecane and n-octadecane accompanied by low concentrations of other n-alkanes and i-alkanes. Reaction product obtained at 360 °C and 7 MPa was blended into mineral diesel fuel in several concentration levels ranging from 5 to 30 wt.%. It was found, that most of the standard parameters were similar to or better than those of pure mineral diesel. On the other hand, low-temperature properties were worse, even after addition of high concentrations of flow improvers.  相似文献   

3.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

4.
LiNi1−yCoyO2 (y=0.1, 0.3 and 0.5) were synthesized by solid state reaction method at 800 °C and 850 °C from LiOH·H2O, NiO and Co3O4 as starting materials. The electrochemical properties of the synthesized LiNi1−yCoyO2 were investigated. As the content of Co decreases, particle size decreases rapidly and particle size distribution gets more homogeneous. When the particle size is compared at the same composition, the particles synthesized at 850 °C are larger than those synthesized at 800 °C. LiNi0.7Co0.3O2 synthesized at 850 °C has the largest intercalated and deintercalated Li quantity Δx among LiNi1−yCoyO2 (y=0.1, 0.3 and 0.5). LiNi0.7Co0.3O2 synthesized at 850 °C has the largest first discharge capacity (178 mAh/g), followed by LiNi0.7Co0.3O2 (162 mAh/g) synthesized at 800 °C. LiNi0.7Co0.3O2 synthesized at 800 °C has discharge capacities of 162 and 125 mAh/g at n=1 and n=5, respectively.  相似文献   

5.
RuxSey nanoparticles supported on different carbon substrates were synthesized by microwave heating of ethylene glycol solutions of Ru(III) chloride and sodium selenite at different pH and Ru/Se mole ratios. The resulting catalysts were used for the electrochemical oxygen reduction reaction (ORR) in acidic solution. The electrochemical activity was highest for the supported catalyst synthesized at pH 8. Increasing the Se concentration of the catalyst up to 15 mol% increased the catalytic activity for the ORR; at this Se concentration, the activity of the catalyst was considerably higher than that observed for pure Ru catalyst synthesized at exactly the same conditions. The influence of the type of carbon support on the activity of the electrocatalyst was also investigated. Among the different supports, including carbon black (Vulcan XC-72R) (C1), and nanoporous carbons synthesized from resorcinol- (C2) and phloroglucinol-formaldehyde (C3) resins, the RuxSey catalyst supported on C3 exhibited highest activity for ORR.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) have been successfully coated with a thin SiCxOy coating when polycarbosilane (PCS) was used as precursor and pyrolyzed in a coke bed. Meanwhile, effect of PCS concentration on oxidation resistance of the coated MWCNTs is studied. The results showed that the pyrolysis products of PCS were composed of amorphous SiCxOy as the main phase, together with β-SiC and SiO2 as the minor phases whose amount increased a little with the increase of temperature from 1000 °C to 1500 °C. The thickness of SiCxOy coating on the surface of MWCNTs increased a little from 1 wt.% to 5 wt.%, but decreased dramatically with PCS concentration in the range of 10-30 wt.%. The oxidation resistance of the coated MWCNTs was greatly improved in comparison with as-received ones. The oxidation peak temperature of the coated MWCNTs reached 783.7 °C, much higher than 652.2 °C for as-received ones.  相似文献   

7.
Jean-Philippe Laviolette 《Fuel》2011,90(9):2850-2857
The non-premixed combustion of C1-C4n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ? TB ? 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and one PFR model to represent the main fluidized bed body. The measured global reaction rates for C2-C4n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. These results show that the conversion of C2-C4n-alkanes can be estimated with one set of critical bed temperatures and modeled with one Arrhenius kinetics expression.  相似文献   

8.
Hydroprocessing of neat sunflower oil was carried out at 360-420 °C and 18 MPa over a commercial hydrocracking catalyst in a bench scale fixed bed reactor. In the studied experimental range, products consisted exclusively of hydrocarbons that differed significantly in composition. While the concentration of n-alkanes exceeded 67 wt.% in the reaction products collected at 360 °C, it decreased to just 20 wt.% in the product obtained at 420 °C. Consequently, the fuel properties of the latter product were very similar to those of standard (petroleum-derived) diesel fuel. Particularly, it exhibited excellent low-temperature properties (cloud point −11 °C; CFPP −14 °C). Reaction products obtained at 400 and 420 °C were blended into petroleum-derived diesel fuel in three concentration levels ranging from 10 to 50 wt.% and the fuel properties of these mixtures were evaluated. Diesel fuel mixtures containing the product of sunflower oil hydrocracking at 420 °C showed very good low-temperature properties including cloud point (−8 °C) and CFPP (−15 °C) that was further lowered to −25 °C due to addition of flow improvers.  相似文献   

9.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

10.
The present paper describes compressive creep behavior of cubic 8 mol% yttria stabilized zirconia+10 mol% La2O3 (fabricated by Spark Plasma Sintering) in the temperature range of 1300–1330 °C at a stress level of 45–78 MPa in vacuum. The pre- and post-creep microstructures, relative magnitudes of the stress exponent (n=1.7–2.1) and the activation energy (540–580 kJ/mol) suggest that grain boundary sliding aided by inter-diffusion of La and Zr leading to the formation of pyrochlore La1.6Y0.4Zr2O7 phase at the grain boundaries during creep is the active creep mechanism in this composite.  相似文献   

11.
Fe-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cell conditions have been prepared by adsorbing two Fe precursors on various commercial and developmental carbon supports. The resulting materials have been pyrolyzed at 900 °C in an atmosphere rich in NH3. The Fe precursors were: iron acetate (FeAc) and iron tetramethoxy phenylporphyrin chloride (ClFeTMPP). The nominal Fe content was 2000 ppm (0.2 wt.%). The carbon supports were HS300, Printex XE-2, Norit SX-Ultra, Ketjenblack, EC-600JD, Acetylene Black, Vulcan XC-72R, Black Pearls 2000, and two developmental carbon black powders, RC1 and RC2 from Sid Richardson Carbon Corporation. The catalyst activity for ORR has been analyzed in fuel cell tests at 80 °C as well as by cyclic voltammetry in O2 saturated H2SO4 at pH 1 and 25 °C, while their selectivity was determined by rotating ring-disk electrode in the same electrolyte. A large effect of the carbon support was found on the activity and on the selectivity of the catalysts made with both Fe precursors. The most important parameter in both cases is the nitrogen content of the catalyst surface. High nitrogen content improves both activity towards ORR and selectivity towards the reduction of oxygen to water (4e reaction). A possible interpretation of the activity and selectivity results is to explain them in terms of two Fe-based catalytic sites: FeN2/C and FeN4/C. Increasing the relative amount of FeN2/C improves both activity and selectivity of the catalysts towards the 4e reaction, while most of the peroxide formation may be attributed to FeN4/C. When FeAc is used as Fe precursor, iron oxide and/or hydroxide are also formed. The latter materials have low catalytic activity for ORR and reduce O2 mainly to H2O2.  相似文献   

12.
In an effort to develop alternative anode materials based on mixed conducting ceramics capable of offering high mixed ionic-electronic conductivity, stability to redox cycles, and limited activity for carbon formation to Ni/YSZ cermets, CaMoO3 ceramics for application as a solid oxide fuel cell (SOFC) anode material were synthesized as a function of temperature and oxygen partial pressure (pO2). CaMoO3 perovskite-dominant powders were obtained by reducing the CaMoO4 showing a structure of orthorhombic unit cells with the following lattice parameters: a = 5.45 Å, b = 5.58 Å, and c = 7.78 Å. The equilibrium total conductivity of CaMoO3, measured by DC 4-probe method in 5% H2/balance N2 condition (pO2 ≈ 10−22 atm) at various temperatures, decreased with increasing temperature below 400 °C, indicating metallic properties with an activation energy of 0.028 eV. Between 400 °C and 600 °C, the equilibrium total conductivity slightly increased, and finally sharply decreased at 800 °C. The Mo metal precipitation during measurement was thermodynamically proved by the predominance diagram for CaMoO3. Finally, a fuel cell with CaMoO3 anode exhibited poor performance with a maximum power density of only 14 mW/cm2 at 900 °C, suggesting that further research is needed to enhance the ionic conductivity and thus improve the catalytic properties.  相似文献   

13.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

14.
A series of the BaFeO3 − x perovskite catalysts was synthesized by a sol-gel method using citric acid and/or EDTA as complexants with a purpose to improve their sulfur-resistance by forming a uniform perovskite structure at a low calcination temperature, i.e. 750 °C. The thermogravimetry results show that almost no carbonate was formed after calcination of the xerogel precursor with the complexants' molar ratio of CA/EDTA ≤ 1.5, which was convinced by the in situ DRIFT spectra results of the Ba-Fe-1 catalyst during the SO2/O2 sorption. It indicates that, after adding EDTA into the complexants, the metal ions of the raw material could be mixed homogeneously and react stoichiometrically by calcination at 750 °C to form a uniform perovskite structure. Accordingly, the obtained Ba-Fe-1 perovskite presented a performed sulfur-resistance. Moreover, the seriously damaged structure of the BaFeO3 − x perovskite by reduction could be in situ regenerated by calcination under lean conditions at 400 °C, which is within the operating temperature zone of the aftertreatment system of diesel to meet the real commercial demands.  相似文献   

15.
BaTiO3-xLiF ceramics were prepared by a conventional sintering method using BaTiO3 powder about 100 nm in diameter. The effects of LiF content (x) and sintering temperature on density, crystalline structure and electrical properties were investigated. A phase transition from tetragonal to orthorhombic symmetry appeared as sintering temperatures were raised from 1100 °C to 1200 °C or as LiF was added from 0 mol% to 3 mol%. BaTiO3-6 mol% LiF ceramic sintered at 1000 °C exhibited a high relative density of 95.5%, which was comparable to that for pure BaTiO3 sintered at 1250 °C. BaTiO3-4 mol% LiF ceramic sintered at 1100 °C exhibited excellent properties with a piezoelectric constant d33 = 270 pC/N and a planar electromechanical coupling coefficient kp = 45%, because it is close to the phase transition point in addition to high density.  相似文献   

16.
The electrical properties and degradation characteristics of low voltage ZnO varistors were investigated as a function of Nd2O3 content. The varistor ceramics with 0.03 mol% Nd2O3 sintered at 1250 °C were far more densified than those with 0.06, 0.09 and 0.12 mol% Nd2O3. The addition of Nd2O3 to the low voltage ZnO varistors greatly improved the current–voltage characteristics; the nonlinear coefficient of varistors increase from 12.2 to 34.6 with increasing Nd2O3 content. The samples with 0.03 mol% Nd2O3 showed excellent stability due to high density and relatively good VI characteristics, with the nonlinear coefficient of 22.5 and the leakage current of 9.6 μA. Their variation rate of varistor voltage and nonlinear coefficient and leakage current were −4.7%, −5.4%, 18.3%, respectively, under AC degradation stress (1.0 V1 mA/125 °C/24 h).  相似文献   

17.
T. Uma 《Electrochimica acta》2007,52(24):6895-6900
The scope of the present work was to investigate and evaluate the electrochemical activity of H2/O2 fuel cells based on the influence of a heteropolyacid glass membrane with a Pt/C electrode at low temperature. A new trend of sol-gel derived PMA (H3PMo12O40) heteropolyacid-containing glass membranes inherent of a high proton conductivity and mechanical stability, was heat treated at 600 °C and implemented to H2/O2 fuel cell activities through electrochemical characterization. Significant research has been focused on the development of H2/O2 fuel cells using optimization of heteropolyacid glasses as electrolytes with Pt/C electrodes at 30 °C. A maximum power density of 23.9 mW/cm2 was attained for operation with hydrogen and oxygen, respectively, at 30 °C and 30% humidity with the PMA glass membranes (4-92-4 mol%). Impedance spectroscopy measurements were performed on a total ohmic cell resistance of a membrane-electrode-assembly (MEA) at the end of the experiment.  相似文献   

18.
The synthesis and transport properties of n-type thermoelectric oxide (ZnO)mIn2O3 (ZmIO) ceramics prepared by conventional solid-state reaction method have been reported. It is found that the transport properties of ZmIO ceramics are very sensitive to the post-annealing temperature as well as the zinc content m. The resistivity of Z5IO annealed at 1400 °C decreases by more than 2 orders of magnitude in comparison with that of Z5IO annealed at 1200 °C, while the resistivities of Z6IO compounds annealed at 1250 and 1350 °C are more than 3 orders of magnitude larger than that of Z6IO annealed at 1300 °C. All the ZmIO compounds annealed at 1300 °C show electron-type conduction with a lowest resistivity at m = 6. It is suggested that the oxygen defects or vacancies in the InO2 layers play a major role on the carrier scattering mechanism, and the observed temperature-dependent resistivity for Z5IO and Z6IO compounds can be satisfactorily described by the variable-range hopping conduction. Furthermore, it is found that the values of Seebeck coefficient for ZmIO are also very sensitive to the zinc content m. The dimensionless figure of merit of 0.0045 at 300 K for m = 6 has been obtained.  相似文献   

19.
Ceria-based materials are prospective electrolytes for low and intermediate temperature solid oxide fuel cells. In the present work, fully dense CeO2 ceramics doped with 10 mol% gadolinium (Gd0.1Ce0.9O1.95, GDC) have been prepared with a Pechini method. Characterization studies were realized with thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), mass spectroscopy (MS), high temperature FT-IR (HT-FTIR) and X-ray diffraction analysis (XRD). A single-phase with a fluorite type structure was found to form at a relatively low calcination temperature of 500 °C. Dense GDC pellets having 98% of the relative density were obtained at sintering temperature of 1400 °C/6 h, which gave significantly higher total ionic conductivity of 3.4×10−2 S cm−1 at 500 °C in air. The present work showed that the Pechini method is a relatively low-temperature preparation technique to synthesize Gd0.1Ce0.9O1.95 powders that provided high sinterability and good ionic conductivity.  相似文献   

20.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号