首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
纳米SiO2改性紫外光固化有机硅杂化材料研究   总被引:3,自引:0,他引:3  
合成了光敏性有机硅树脂PSUA,采用超声分散法将纳米SiO2分散在光敏性有机硅体系中,通过紫外光固化方式制备了光固化有机硅杂化材料.研究了纳米SiO2含量对杂化体系稳定性和光固化速率的影响,测定了光固化膜硬度,用扫描电镜观察了光固化膜断面形貌.实验结果表明,表面改性的纳米SiO2在杂化体系中分散比较均匀,稳定性好,能够有效增强光固化膜的硬度,但降低了光固化速率,杂化体系中纳米SiO2的用量以3%~5%为宜.  相似文献   

2.
将普通纳米SiO2、疏水纳米SiO2、亲水纳米SiO2分别加入到聚偏氟乙烯(PVDF)铸膜液中,通过相转化法制得PVDF/SiO2杂化超滤膜,重点探讨了SiO2加入量及上述三种类型纳米SiO2对PVDF杂化超滤膜水通量、截留率和抗污染性能的影响.结果表明:膜的孔隙率、平均孔径、水通量、截留率和抗污染性随SiO2含量增加而先增大后减少;SiO2含量为2%时,膜水通量由大至小为:普通纳米SiO2杂化膜、疏水纳米SiO2杂化膜、亲水纳米SiO2杂化膜,抗污染性由大至小为:亲水纳米SiO2杂化膜、普通纳米SiO2杂化膜、疏水纳米SiO2杂化膜.  相似文献   

3.
采用溶液聚合法合成了水溶性的甲基丙烯酸丁酯-甲基丙烯酸(BMA-MA)共聚物,以这种共聚物为成膜树脂制备了光致聚合物全息材料,研究了光致聚合物全息材料的光敏性、衍射效率、空间频率响应、折射率调制度、曝光能量常数等全息性能。结果表明,在记录信号空间频率为1580 cy/mm时,以BMA-MA共聚物为成膜树脂的光致聚合物全息材料的灵敏度可达15 mJ/cm2,最大衍射效率为92.8%,曝光能量常量为10.9 mJ/cm2,衍射效率随所记录信号空间频率的增加而降低,材料的最大折射率调制度为2.85×10-3,是一种具有一定应用前景的光致聚合物全息材料。  相似文献   

4.
用无皂乳液聚合法一步制备了聚苯乙烯/表面有机化二氧化硅(PS/SiO2)纳米杂化材料,采用红外光谱(FF-IR)、透射电子显微镜(TEM)以及热分析(TGA-DSC)等对材料的核-壳结构进行了表征,表明PS/SiO2纳米杂化材料为平均粒径在60nm左右的良好分散圆球。利用四球机考察了添加剂在菜籽油中的摩擦学性能。结果表明,合成的PS/SiO2纳米杂化材料能提高菜籽油的抗磨性能及承载能力,并能降低摩擦系数,其最佳用量为1.0%。  相似文献   

5.
李镇江  梁玮  张林 《功能材料》2012,43(22):3088-3091,3096
以异氰酸丙基三乙氧基硅烷(IPTS)接枝环氧树脂(EP)合成出了一种新型的环氧预聚物(IEP),由IEP通过溶胶-凝胶法制备出了EP/SiO2杂化材料。通过FT-IR、AFM、TG、DMA表征和分析了杂化材料的化学结构、SiO2纳米粒子在EP基体中的分散性和无机纳米粒子的引入对EP树脂热性能和力学性能的影响。结果表明,原位生成的纳米SiO2粒子在EP基体中的分散性良好,其平均尺度约为50nm;杂化材料的热性能和力学性能相比于纯EP有了很大程度的提高。  相似文献   

6.
PMMA/SiO_2-TiO_2杂化纤维的制备与表征   总被引:2,自引:0,他引:2  
以正硅酸乙酯和钛酸四丁酯为前驱体,乙烯基三乙氧基硅烷为偶联剂,采用溶胶凝胶原位聚合法制备了聚甲基丙烯酸甲酯/二氧化硅-二氧化钛(PMMA/SiO2-TiO2)杂化溶胶,陈化后用提拉法制得杂化纤维。研究了溶胶的杂化反应机理;使用红外光谱(IR)、扫描电子显微镜(SEM)、紫外-可见光谱(UV-Vis)、荧光光谱(FL)和热重分析(TGA)分析了杂化纤维的结构与性能。结果表明,PMMA与SiO2-TiO2之间通过化学键连接;纤维直径为150μm,在纤维内部有机无机相间形成均一的连续相;TiO2的引入增加了其抗紫外性;杂化纤维具有荧光性能;其耐热性能优于纯PMMA。  相似文献   

7.
在乙醚介质中,通过丁二酸酐与γ-氨丙基三甲氧基硅烷改性后的纳米SiO2(即可分散的纳米SiO2,简称DNS)反应,合成了羧基化的DNS,经过壳聚糖与羧基化的DNS脱水生成酰胺的过程,制备了壳聚糖/DNS杂化材料.通过红外光谱、扫描电镜和热重分析对杂化材料进行表征.研究了壳聚糖及杂化材料微粒吸附Pb2+时pH值、时间、用...  相似文献   

8.
以六亚甲基二异氰酸酯(HDI)或甲苯-2,4-二异氰酸酯(TDI)分别与不同相对分子质量的聚乙二醇(PEG)反应制备聚氨酯预聚体,再以预聚体对纳米SiO2进行表面接枝改性,将改性纳米SiO2分散到聚氨酯丙烯酸酯(PUA)中,光固化制备了PUA/SiO2纳米杂化涂层。场发射扫描电子显微镜和差示扫描量热法研究表明,与未改性的纳米SiO2相比,以聚氨酯分子链改性的纳米SiO2可显著提高与PUA树脂相容性及杂化涂层的热稳定性能。以摆杆阻尼试验仪及漆膜冲击器研究了杂化涂层的力学性能,研究表明通过调整预聚体的分子链结构可在提高杂化涂层硬度的同时,不损失涂层的冲击性能。  相似文献   

9.
为解决纳米粒子在聚四氟乙烯(PTFE)树脂中难分散均匀的问题,使用PTFE乳液通过原位溶胶-凝胶法(Sol-Gel)制备了聚四氟乙烯/二氧化硅(SiO2)杂化材料,并对其性能进行了表征与研究.研究表明:杂化材料的拉伸强度在SiO2含量为1.05%(记为FS-2)时达到最大值20.96 MPa,为纯PTFE的两倍;断裂伸长率随着SiO2含量的增加而降低,硬度逐渐升高,接触角由121°降至79°.由SEM结果发现,试样FS-2中SiO2的粒径仅为100 nm左右,但随着SiO2含量的增加,粒径变大.杂化材料的耐热性较PTFE有一定提高,当杂化材料中SiO2含量达到5.00%时,热分解温度由纯PTFE的503℃上升至528℃.  相似文献   

10.
纳米SiO_2/有机硅改性聚丙烯酸酯复合材料性能研究   总被引:2,自引:1,他引:1  
采用无皂乳液聚合技术和溶胶-凝胶技术,合成了纳米SiO2/有机硅改性聚丙烯酸酯无皂乳液,采用TEM和SEM观察了乳液和膜的微观结构。纳米复合无皂乳液具有优良的耐化学稳定性,随着纳米SiO2含量增加,乳液的离心稳定性降低;纳米SiO2/有机硅改性聚丙烯酸酯杂化膜的耐溶剂性显著好于有机硅改性聚丙烯酸酯膜,且随着纳米SiO2含量增加,杂化膜的耐溶剂性增加;杂化膜的透光性能好,且具有紫外光吸收特性;杂化膜含有的SiO2粒子的尺寸100nm,且均匀分散于聚丙烯酸酯组分中。  相似文献   

11.
以正硅酸乙酯(TEOS),γ-氨丙基三甲氧基硅烷(KH-550)和聚乙烯醇(PVA)为主要原料,基于溶胶-凝胶(sol-gel)工艺,制备了一种纳米SiO2/PVA杂化材料,并将其用于纸张表面增强。通过红外光谱(IR),X射线衍射(XRD),差示扫描量热(DSC)和热重分析(TGA)对杂化材料进行表征,结果表明,纳米SiO2和PVA之间产生了化学键的结合,无机相的引入使杂化材料的热分解温度升高,结晶度降低。初步应用实验结果表明,当增强剂用量为1%时,纸张的环压指数提高27%,拉伸强度提高40%,撕裂度提高33%,拉毛强度提高35%。  相似文献   

12.
SiO2不同的掺杂方式对聚氨酯树脂材料性能的影响   总被引:8,自引:0,他引:8  
张志华  沈军  吴广明  夏长生  杨帆  付甜  孙骐  王珏 《材料导报》2003,17(Z1):127-130
采用溶胶凝胶法制备纳米SiO2颗粒,然后在聚氨酯弹性体/SiO2复合材料的不同制备方法方面进行了尝试,并针对SiO2不同的掺杂方式对聚氨酯树脂材料性能的影响进行了研究,为聚氨酯弹性体性能的优化提供了一条最佳的思路和方法.利用红外分光光度计(IR)、万能电子试验机、动态力学分析仪(DMA)、量热示差扫描仪(DSC)、紫外/可见/近红外分光光度计(UV/VIS/VIR)分别表征了纳米复合树脂材料的结构、力学性能、热稳定性、展色性和干爽性.  相似文献   

13.
首先利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)对纳米SiO_2进行表面改性(SiO_2-MPS),再通过原位聚合法在SiO_2-MPS表面接枝聚甲基丙烯酸甲酯(PMMA)。采用熔融共混法将未改性和改性SiO_2与PMMA共混制成预分散母料,再分别与PMMA熔融共混制备纳米SiO_2/PMMA透明复合材料。用FTIR、TG和SEM对不同表面处理的纳米SiO_2和纳米SiO_2/PMMA复合材料的结构进行表征,并对其冲击强度、接触角和透光率进行表征。结果表明:SiO_2-MPS/PMMA复合材料中纳米SiO_2与MPS、MPS与PMMA间形成化学键,接枝率分别达到10.01%和22.95%,SiO_2-MPS-PMMA在PMMA中分散性最好,团聚现象明显减少,与纯PMMA相比,SiO_2/PMMA、SiO_2-MPS/PMMA和SiO_2-MPS-PMMA/PMMA复合材料的冲击强度、与水接触角均略有提升,透光率达到90%左右,最高可达94.2%。  相似文献   

14.
通过原位聚合法制备了尼龙6/SiO2纳米复合材料。利用扫描电镜观测了复合材料的表面形貌,结果表明,纳米SiO2颗粒均匀地分布在尼龙6基体中。利用电子万能试验机对不同纳米SiO2含量的复合材料进行了短期(24 h)蠕变性能的测试,结果表明,随着纳米SiO2含量的增加,复合材料的抗蠕变性能也随着增大;在30 MPa、40 MPa和50 MPa的应力水平下,纳米SiO2含量为5%的纳米复合材料的蠕变应变分别比纯尼龙6降低了38.4%、61.0%和71.9%。  相似文献   

15.
以月桂酸和棕榈酸二元低共熔混合物(LA-PA)、聚对苯二甲酸乙二酯(PET)和纳米二氧化硅(SiO2)为原料,通过静电纺丝的方法成功制备了新型的LA-PA/PET/SiO2定形相变复合纤维。分别采用扫描电子显微镜(SEM)和差示扫描量热仪(DSC)研究了纳米SiO2对静电纺LA-PA/PET/SiO2复合相变纤维的形貌结构和热学性能的影响。SEM观察结果显示,随着纳米SiO2的加入,复合相变纤维表面呈现出光滑的形态特点,纤维直径有所降低;且随着纳米SiO2含量的增加而逐渐减小。DSC分析结果表明纳米SiO2的含量对复合相变纤维的熔化焓值和结晶焓值有一定的影响,对相变温度没有显著性的影响。  相似文献   

16.
纳米SiO2/纤维素复合材料的非均相制备及其性能   总被引:3,自引:2,他引:1       下载免费PDF全文
采用硅酸四乙酯(TEOS)作为无机前聚物,纤维素为有机组分,利用溶胶-凝胶法在非均相乙醇溶液中制备了纳米SiO2/纤维素复合材料。通过傅里叶红外光谱(FTIR)、透射电镜(TEM)和热重分析(TGA)对复合材料的形貌、结构以及热稳定性进行表征。讨论了SiO2含量对材料力学性能的影响。研究了主要因素碱催化剂氨水对纤维素与SiO2复合效果的影响。结果表明,纳米复合材料的弹性模量、拉伸强度随SiO2含量的增加先增加后减少,质量分数分别为3.1%、10.6%时弹性模量、拉伸强度达到最大。氨水加入量为3.70×10-4 mol/L时,纤维素与SiO2的复合效果最佳。非均相制备的纳米SiO2/纤维素复合材料同样也明显提高了纤维素材料的疏水性、热稳定性和力学性能。  相似文献   

17.
通过熔融接枝反应将乙烯基三甲氧基硅烷(A-171)接枝到高密度聚乙烯(HDPE)分子链上,以四乙氧基硅烷(TEOS)为前驱体,加入接枝的HDPE中,通过溶胶-凝胶法(Sol-Gel)制备了HDPE/SiO2杂化材料。采用DSC分析,研究了SiO2对HDPE结晶行为的影响。结果表明,SiO2在HDPE中起到异相成核的作用,使HDPE的结晶温度提高、微晶尺寸分布减小。随降温速率增大,结晶峰变宽,结晶温度Tp向低温方向移动。非等温结晶动力学研究表明,在冷却速率范围5℃/min~20℃/min内,杂化材料异相成核,近似一维生长。  相似文献   

18.
目的研究纳米SiO2对可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P34HB)包装膜结晶行为和力学性能的影响。方法采用溶液浇铸法制备SiO_2/P34HB纳米复合薄膜,利用红外光谱仪(FTIR)、扫描电镜(SEM)、正置热台显微镜(POM)、差示扫描量热仪(DSC)和万能力学试验机等研究纳米SiO_2对P34HB结构、结晶性和力学性能等的影响。结果纳米SiO_2在P34HB中起到异相成核的作用,SiO2/P34HB复合膜的结晶速率和结晶度得到明显改善。相比P34HB包装膜,当纳米SiO_2质量分数为2%时,SiO_2/P34HB复合膜的弹性模量和拉伸强度分别提高了72.7%和60.9%。结论获得了纳米SiO2改善可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)包装膜结晶度和力学性能的最佳掺杂比例参数。  相似文献   

19.
选用乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯(E-MA-GMA)三元共聚物对纳米SiO2表面进行修饰包覆改性,考察改性后纳米SiO2在聚对苯二甲酸丁二醇酯(PBT)基体中的分散情况及对PBT复合材料力学性能的影响。FTIR、TEM、SEM结果表明,E-MA-GMA的环氧基团与纳米SiO2的—OH 基团发生反应,破坏了SiO2的链状团聚结构,降低了纳米粒子间氢键等作用力。质量分数为10%~20% E-MA-GMA 改性的纳米SiO2在PBT基体中的分散性及其与基体的相容性均得到明显改善,从而提高了PBT基复合材料的弯曲和拉伸性能。与纯PBT相比,SiO2/PBT复合材料的拉伸强度提高了9%,而弯曲强度和模量分别提高了14%和20%。  相似文献   

20.
通过原位聚合和螺杆挤出法制备了尼龙6/SiO2纳米复合材料、尼龙6/GF复合材料和尼龙6/SiO2/GF纳米复合材料。利用显微硬度计对不同纳米SiO2和玻璃纤维(GF)含量的三种复合材料进行了测量,结果表明,对于尼龙6/SiO2纳米复合材料或者尼龙6/GF复合材料而言,材料的显微硬度随着纳米SiO2含量或者GF含量的增加而增大;对于尼龙6/SiO2/GF纳米复合材料而言,当GF含量一定时,SiO2含量高的材料显微硬度相应要高;从整个曲线来看,随着GF含量的增加,材料的显微硬度呈现先上升然后下降再上升的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号