首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
以末端基为羟基的聚二甲基硅氧烷(PDMS)与聚四甲基醚二醇(PTMG)为混合软段合成出一系列含硅氧烷的聚氨酯弹性体。用热重分析(TGA)与Ozawa-Flynn的方法研究了聚合物的热稳定性以及热降解动力学,结果表明,PDMS的引入改善了传统聚氨酯弹性体的热稳定性,合成所得聚合物均具有两个不同的热降解阶段,且随着PDMS含量的增加,聚合物的热稳定性逐渐降低。  相似文献   

2.
以对苯二甲酸二甲酯(DMT)、1,4丁二醇(BD)、聚四氢呋喃醚(PTMG)和端羟基聚丁二烯(HTPB)为原料,采用熔融缩聚方法一步合成了一系列端羟基聚丁二烯改性的聚醚酯弹性体(PBT-co-PTMG/HTPB)。通过红外、核磁和凝胶色谱等分析方法对其分子结构和分子量进行了表征;测定了聚合物的热性能和物理力学性能。结果发现,随着PBT-co-PTMG/HTPB共聚物中端羟基聚丁二烯含量的增加,数均分子量逐渐增大,最高突破8万;玻璃化转变温度由-25℃降低到-65℃,耐低温性能得到明显改善;共聚物力学性能测试结果表明,当HTPB的质量分数在10%以下时,其强度和断裂伸长率随着HTPB含量的增加而变大,但是质量分数超过10%以后,材料的强度和断裂伸长率随其含量的增加而变小。  相似文献   

3.
以对苯二甲酸二甲酯(DMT)、1,4丁二醇(BD)、聚四氢呋喃醚(PTMG)和端羟基聚丁二烯(HTPB)为原料,采用熔融缩聚方法一步合成了一系列端羟基聚丁二烯改性的聚醚酯弹性体(PBT-co-PTMG/HTPB)。通过红外、核磁和凝胶色谱等分析方法对其分子结构和分子量进行了表征;测定了聚合物的热性能和物理力学性能。结果发现,随着PBT-co-PTMG/HTPB共聚物中端羟基聚丁二烯含量的增加,数均分子量逐渐增大,最高突破8万;玻璃化转变温度由-25℃降低到-65℃,耐低温性能得到明显改善;共聚物力学性能测试结果表明,当HTPB的质量分数在10%以下时,其强度和断裂伸长率随着HTPB含量的增加而变大,但是质量分数超过10%以后,材料的强度和断裂伸长率随其含量的增加而变小。  相似文献   

4.
以1,2-二(4-羟基苯基)-碳硼烷和甲基乙烯基二氯硅烷为单体,在三乙胺为缚酸剂的条件下进行缩聚反应,得到聚乙烯基甲基硅氧烷-碳硼烷V-PMSCB。采用红外、核磁和GPC对V-PMSCB结构和相对分子质量进行表征,结果表明聚合物结构与设计结构完全一致,且其数均分子量为5.8×10~4。利用红外、差示扫描量热分析和热重分析(TGA)研究了该树脂与含氢硅油的固化工艺,得知其固化工艺为60℃/3 h, 115℃/2 h, 140℃/1 h。通过对该固化产物PMSCB进行TGA分析,可知其具有优异的热稳定性和热氧稳定性,其在空气中5%热失重温度高于1000℃,1000℃时的残碳率高达99.07%。  相似文献   

5.
以甲基氢二氯硅烷、甲基乙烯基二氯硅烷为原料,采用氨解反应以及热聚合反应合成了一系列乙烯基氢基甲基聚硅氮烷(PSZ135-170),其数均分子量(Mn)在2.9×103~1.9×105之间,单位浓度聚合物的粘度(ηred)在0.06~0.49mL/g之间。通过FTIR和1H NMR对聚硅氮烷结构进行了表征,该系列聚硅氮烷具有无定型结构,可溶解于正己烷、甲苯、乙酸乙酯、二氯甲烷和N,N-二甲基甲酰胺等常用有机溶剂中,通过TGA分析了该系列聚硅氮烷的热性能,发现随着聚硅氮烷分子量的增加,在N2中25~700℃热解后剩余物的百分含量逐渐升高,最高可达72.58%。  相似文献   

6.
合成窄分子量分布的α-乙烯基聚(氟)硅氧烷是制备结构可控的侧链为有机(氟)硅氧烷两亲性梳形聚合物的关键。文中以丁基锂为引发剂,进行了D3和F3的活性阴离子开环聚合。通过实验发现在0℃条件下,用两步聚合法,封端时间11.00 h为较优的开环聚合条件。在此条件下制备了不同聚合度的、窄分子量分布的α-乙烯基聚二甲基硅氧烷和α-乙烯基聚[甲基(3′,3′,3′-三氟丙基)]硅氧烷,聚合物分子量分布在1.15以下。  相似文献   

7.
合成窄分子量分布的α-乙烯基聚(氟)硅氧烷是制备结构可控的侧链为有机(氟)硅氧烷两亲性梳形聚合物的关键。文中以丁基锂为引发剂,进行了D3和F3的活性阴离子开环聚合。通过实验发现在0℃条件下,用两步聚合法,封端时间11.00 h为较优的开环聚合条件。在此条件下制备了不同聚合度的、窄分子量分布的α-乙烯基聚二甲基硅氧烷和α-乙烯基聚[甲基(3′,3′,3′-三氟丙基)]硅氧烷,聚合物分子量分布在1.15以下。  相似文献   

8.
采用γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)、二端羟基二甲基聚硅氧烷(107硅橡胶)为原料,盐酸作为催化剂,在水与甲苯混合体系中制备了一系列含有丙烯酰氧基团的硅氧烷预聚体,探讨了原料质量比例、原料黏度大小对制备硅氧烷预聚体的光固化行为的影响。利用红外光谱、热失重分析等手段对硅氧烷预聚体及光固化后产物进行了表征,结果表明,制备的硅氧烷预聚体外观无色透明澄清,黏度可调,具有优异的紫外光(UV)固化特性,同时固化后产物具有较高的热稳定性,其5%热失重温度均高于300℃;同时研究了合成硅氧烷预聚体在UV固化有机硅压敏胶中的应用。  相似文献   

9.
用八甲基环四硅氧烷(D4)、八苯基环四硅氧烷(P4)作为单体,N,N-二甲基甲酰胺(DMF)作促进剂,对-双(二甲基-锂氧硅基)苯醚作引发剂,合成了嵌段聚(二苯基-二甲基-二苯基)硅氧烷(PMP)。该共聚物的分子量用特性黏数表示,用扭辩分析(TBA)和差示扫描量热(DSC)研究了它们的热性质。TBA曲线表明,PMP-10和PMP-40都存在两个玻璃化温度区间。DSC曲线表明,聚二甲基硅氧烷(PDMS)在350℃以上存在一个放热峰;PMP-10和PMP-50也都存在一个放热峰,但在400℃以后,各存在一个吸热峰,其峰值分别为394.45℃和523.98℃,应属于P嵌段的熔点峰,P嵌段的含量越多则熔点越高。  相似文献   

10.
对-双(二甲基-羟基硅基)苯及其缩聚物的合成   总被引:2,自引:0,他引:2  
以二甲基二氯硅烷及对二溴苯等为主要原料,经历三个反应步骤合成了对-双(二甲基-羟基硅基)苯, 所有中间产物的分子结构均用1H-NMR确证.首次采用辛酸己胺作催化剂,将对-双(二甲基-羟基硅基)苯进行缩聚,获得了聚四甲基对硅亚苯基硅氧烷;研究了聚合时间以及催化剂用量对聚合物特性粘数的影响,并用1H-NMR及X射线衍射对聚合物进行了表征。  相似文献   

11.
酪氨酸改性聚乳酸共聚物的合成及降解研究   总被引:1,自引:1,他引:1  
以乳酸(D,L-LA)和L-酪氨酸(Tyr)为原料[n(D,L-LA)/n(Tyr)=95/5],氯化亚锡(Sn(cl)2)为催化剂,采用梯度升温法,通过直接熔融缩聚合成聚(乳酸-酪氨酸)共聚物(PLA-co-Tyr).用特性粘度测试、FT-IR、1 H-NMR、GPC、DSC、XRD、TG等对其进行表征,通过SEM、XRD等方法研究了降解前后材料的表面形态、结晶度及失重率的变化.结果表明:系列共聚物中的重均相对分子量Mw最大可达2900,与聚乳酸相比具有较小的Tg和结晶度,分解温度高于180℃,具有良好热稳定性且降解性能优于聚乳酸.  相似文献   

12.
以三羟甲基丙烷、超支化聚酯、季戊四醇和甘露醇为多羟基核,以甲苯-2,4-二异氰酸酯和甲基丙烯酸羟乙酯封端,采用溶液聚合的方法合成了4种不饱和的超支化聚氨酯低聚物。讨论了不同因素对以季戊四醇为核的产物反应的影响,发现反应温度可以调节产物的热稳定性。用红外光谱仪、差示扫描量热仪和凝胶渗透色谱仪对产物进行了表征,结果表明这4种不饱和的超支化聚氨酯的玻璃化转变温度Tg在13.5~57.4℃之间,尤其是以季戊四醇为核的产物的Tg为57.4℃,数均分子量Mn为1674,可用于低温固化粉末涂料。  相似文献   

13.
研究了茂金属催化体系[2-C5Me4-6-tBuC6H3O]TiCl2/Al(iBu)3/Ph3CB(C6F5)4催化5-亚乙烯基-2-降冰片烯(ENB)与乙烯(E)的共聚反应。考察了聚合条件对催化活性、共聚物中ENB的含量和共聚物分子量的影响。利用氢核磁共振谱(1H-NMR)、差示扫描量热仪(DSC)和凝胶渗透色谱仪(GPC)对合成的共聚物进行表征。结果表明,在ENB/E共聚反应中,ENB环内双键参与聚合,ENB环外双键(亚乙烯基)保留。合成了ENB物质的量分数高达50.1%和玻璃化转变温度高达170.5℃的共聚物。合成的共聚物分子量分布较窄(PDI=1.93~2.11),最高分子量达到193 kg/mol。  相似文献   

14.
白晓丹  樊国栋  李甜甜 《功能材料》2012,43(6):681-683,687
以乳酸(D,L-LA)和L-酪氨酸(Tyr)为原料[n(D,L-LA)/n(Tyr)=95/5],采用梯度升温法,通过直接熔融缩聚合成了系列聚(乳酸-酪氨酸)共聚物(PLA-co-Tyr)。最佳工艺条件为压力0.095MPa,催化剂Sn(Cl)2用量为0.4%(质量分数),聚合温度170℃,反应10h。用特性粘度测试、FT-IR、1 H-NMR、GPC、XRD、DSC等对其进行表征,结果表明,此方法操作简单且成本低廉,系列共聚物与PLA相比,分子链中引入了活性基团,具有较小的Tg,结晶度有所降低,并且通过控制酪氨酸的加入量可以调节聚合物的结晶度。该聚合物分子量能满足用作药物缓释试剂的要求。  相似文献   

15.
以液态聚硅烷(LPS)为原料,首次在高温高压条件下制备了聚碳硅烷(PCS)先驱体,对其组成及结构进行了表征.研究表明,LPS高压合成的PCS是以Si-C为主链的聚合物.其重均分子量为2861,分子量分布系数为1.92,实验式为SiC1.89H481O0.05,主要含有由Si-CH3,Si-CH2-Si,Si-H组成的SiC4,SiC3H等结构单元,C H/Si-H值约为9.83,SiC3H/SiC4值约为0.48,是支化度较高的分子.高压合成的PCS比常压PCS有高的分子量及Si H键含量,比常压合成体现出了PCS先驱体的优异性.  相似文献   

16.
不同投料比对胆酸改性聚(D,L-乳酸)的影响   总被引:1,自引:0,他引:1  
以功能分子胆酸改性聚外消旋乳酸(PDLLA),采用直接熔融聚合法合成了胆酸-聚(D,L-乳酸)共聚物。用特性黏数[η]、FT-IR1、H-NMR、DSC、GPC、XRD等进行系统表征,考察了不同投料比对共聚物的影响。结果发现,随着胆酸和乳酸投料比(物质的量)的减小,共聚物含有的胆酸单元核心逐渐减少。当胆酸和乳酸的投料比为1∶15,有4个胆酸核的共聚物的重均分子量(-Mw)最大,-Mw为12700,分散度-Mw/-Mn为1.68。基本上只含有一个胆酸单元核心的星型高分子,其具有一定的结晶性。  相似文献   

17.
采用二茂钛化合物Cp2TiCl2,还原剂(Zn)及引发剂4,4′-亚甲基二(N,N-二缩水甘油基苯胺)(I4)组成的催化体系引发甲基丙烯酸甲酯(MMA)活性/可控自由基聚合,合成了带有羟基功能团的星形无规聚甲基丙烯酸甲酯(PMMA)。探讨了聚合温度,聚合时间及单体与引发剂摩尔比对MMA聚合的影响,实验结果表明,在聚合温度为90℃,[MMA]/[I4]=200/1时,单体转化率达90%。单体转化率与聚合物分子量之间存在线性增长的关系,表明该聚合属于活性聚合。采用凝胶渗透色谱(GPC),核磁共振(1H-NMR和13C-NMR)等手段表征了聚合物的微观结构和性能,所得PMMA为无规立构、分子量分布较窄(1.41~1.65),且聚合物的臂数与引发剂中环氧功能团的数量一致。  相似文献   

18.
苯乙烯(St)与对氯甲基苯乙烯(CMS)进行自由基共聚制得共聚物(PSC),用PSC引发甲基丙烯酸十二氟庚酯进行原子转移自由基聚合(ATRP),制得含氟接枝共聚物(PGF)。利用红外光谱(FT-IR)、核磁共振(1H-NMR)、差示扫描量热(DSC)和凝胶渗透色谱(GPC)对其结构和性能进行表征。结果表明,当含氟单体转化率相近时,支链长度(Mn,s)随PGF的支链数目增加而减少;随着Mn,s的增加,成膜温度对PGF疏水性能的影响越明显;Mn,s为1142时,PGF有83℃和94℃两个玻璃化转变温度(Tg),均比PSC的Tg(103℃)低。  相似文献   

19.
药物缓释材料聚(乳酸-丙氨酸)的直接法合成与表征   总被引:4,自引:0,他引:4  
直接以外消旋乳酸(LA)、L-丙氨酸(Ala)为原料[n(LA):n(Ala)=9:1],采用熔融聚合法合成药物缓释材料聚(乳酸-丙氨酸)共聚物[P(LA-co-Ala)],并用特性黏数、FTIR、1H NMR、GPC、DSC、XRD等手段进行系统表征.熔融共聚中采用一次投料并分次预聚,可生成重均相对分子质量(Mw)达3200(分散度Mw/Mn=1.23)的共聚物,相对分子质量可以达到丙交酯开环共聚法的水平.首次报道了P(LA-co-Ala)]药物缓释材料的DSC与XRD表征结果,其与聚外消旋乳酸(PDLLA)相比,共聚物具有较低的Tg、Tm和结晶度.新方法步骤少、操作简便,且成本更加低廉.  相似文献   

20.
PDMS/SiO2杂化材料的合成与性能研究   总被引:1,自引:0,他引:1  
采用草酸作为催化剂,通过溶胶-凝胶(Sol-Gel)反应制得了透明的块状聚二甲基硅氧烷/SiO2有机-无机杂化材料,并采用FTIR、TG等方法对所制备的杂化材料进行了分析表征,考核了杂化材料的硬度.结果表明:所制备的杂化材料中的硬度随PDMS用量、分子量以及H2O/TEOS的摩尔比的增加而降低,其热重损失率随PDMS用量的增加而下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号