首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To use high-permittivity materials (HPM) positioned near radiofrequency (RF) surface coils to manipulate transmit/receive field patterns.

Materials and methods

A large HPM pad was placed below the RF coil to extend the field of view (FOV). The resulting signal-to-noise ratio (SNR) was compared with that of other coil configurations covering the same FOV in simulations and experiments at 7 T. Transmit/receive efficiency was evaluated when HPM discs with or without a partial shield were positioned at a distance from the coil. Finally, we evaluated the increase in transmit homogeneity for a four-channel array with HPM discs interposed between adjacent coil elements.

Results

Various configurations of HPM increased SNR, transmit/receive efficiency, excitation/reception sensitivity overlap, and FOV when positioned near a surface coil. For a four-channel array driven in quadrature, shielded HPM discs enhanced the field below the discs as well as at the center of the sample as compared with other configurations with or without unshielded HPM discs.

Conclusion

Strategically positioning HPM at a distance from a surface coil or array can increase the overlap between excitation/reception sensitivities, and extend the FOV of a single coil for reduction of the number of channels in an array while minimally affecting the SNR.
  相似文献   

2.

Objective

In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields.

Materials and methods

An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils.

Results

A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter.

Conclusions

The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
  相似文献   

3.

Objective

This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials and methods

The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites.

Results

Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites.

Conclusion

Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
  相似文献   

4.

Objectives

The accuracy and precision of the parallel RF excitations are highly dependent on the spatial and temporal fidelity of the magnetic fields involved in spin excitation. The consistency between the nominal and effective fields is typically limited by the imperfections of the employed hardware existing both in the gradient system and the RF chain. In this work, we experimentally presented highly improved spatially tailored parallel excitations by turning the native hardware accuracy challenge into a measurement and control problem using an advanced field camera technology to fully correct parallel RF transmission experiment.

Materials and methods

An array of NMR field probes is used to measure the multiple channel RF pulses and gradient waveforms recording the high power RF pulses simultaneously with low frequency gradient fields on equal time basis. The recorded waveforms were integrated in RF pulse design for gradient trajectory correction, time imperfection compensation and introduction of iterative RF pre-emphasis.

Results

Superior excitation accuracy was achieved. Two major applications were presented at 7 Tesla including multi-dimensional tailored RF pulses for spatially selective excitation and slice-selective spoke pulses for \(B_{1}^{ + }\) mitigation.

Conclusion

Comprehensive field monitoring is a highly effective means of correcting for the field deviations during parallel transmit pulse design.
  相似文献   

5.

Objective

Arterial spin labelling (ASL) techniques benefit from the increased signal-to-noise ratio and the longer T 1 relaxation times available at ultra-high field. Previous pulsed ASL studies at 7 T concentrated on the superior regions of the brain because of the larger transmit radiofrequency inhomogeneity experienced at ultra-high field that hinders an adequate inversion of the blood bolus when labelling in the neck. Recently, researchers have proposed to overcome this problem with either the use of dielectric pads, through dedicated transmit labelling coils, or special adiabatic inversion pulses.

Materials and methods

We investigate the performance of an optimised time-resampled frequency-offset corrected inversion (TR-FOCI) pulse designed to cause inversion at much lower peak B 1 + . In combination with a PICORE labelling, the perfusion signal obtained with this pulse is compared against that obtained with a FOCI pulse, with and without dielectric pads.

Results

Mean grey matter perfusion with the TR-FOCI was 52.5 ± 10.3 mL/100 g/min, being significantly higher than the 34.6 ± 2.6 mL/100 g/min obtained with the FOCI pulse. No significant effect of the dielectric pads was observed.

Conclusion

The usage of the B 1 + -optimised TR-FOCI pulse results in a significantly higher perfusion signal. PICORE–ASL is feasible at ultra-high field with no changes to operating conditions.
  相似文献   

6.

Objective

To demonstrate imaging performance for cardiac MR imaging at 7 T using a coil array of 8 transmit/receive dipole antennas and 16 receive loops.

Materials and methods

An 8-channel dipole array was extended by adding 16 receive-only loops. Average power constraints were determined by electromagnetic simulations. Cine imaging was performed on eight healthy subjects. Geometrical factor (g-factor) maps were calculated to assess acceleration performance. Signal-to-noise ratio (SNR)-scaled images were reconstructed for different combinations of receive channels, to demonstrate the SNR benefits of combining loops and dipoles.

Results

The overall image quality of the cardiac functional images was rated a 2.6 on a 4-point scale by two experienced radiologists. Imaging results at different acceleration factors demonstrate that acceleration factors up to 6 could be obtained while keeping the average g-factor below 1.27. SNR maps demonstrate that combining loops and dipoles provides a more than 50% enhancement of the SNR in the heart, compared to a situation where only loops or dipoles are used.

Conclusion

This work demonstrates the performance of a combined loop/dipole array for cardiac imaging at 7 T. With this array, acceleration factors of 6 are possible without increasing the average g-factor in the heart beyond 1.27. Combining loops and dipoles in receive mode enhances the SNR compared to receiving with loops or dipoles only.
  相似文献   

7.

Objective

We demonstrate the potential clinical utility of a 4D non-gadolinium dynamic angiography technique based on arterial spin-labeling called contrast inherent inflow enhanced multi-phase angiography (CINEMA) in pediatric patients.

Materials and Methods

CINEMA was qualitatively compared to conventional time-of-flight (TOF) angiography in a cohort of 31 pediatric patients at 3 Tesla.

Results

CINEMA data were successfully acquired and reconstructed in all patients with no image artifacts. There were no cases where CINEMA was rated inferior to TOF in depicting intracranial vessel conspicuity. In 19 cases, CINEMA was rated equivalent to TOF and in the 12 remaining cases CINEMA was rated superior to TOF.

Conclusion

There is a steadily rising concern in adults and children over the potential effects of intracranial deposition of gadolinium. CINEMA is therefore a viable alternative in dynamic neurovascular imaging.
  相似文献   

8.

Objective

In this work, a prototype of an effective electromagnet with a field-of-view (FoV) of 140 mm for neonatal head imaging is presented. The efficient implementation succeeded by exploiting the use of steel plates as a housing system. We achieved a compromise between large sample volumes, high homogeneity, high B0 field, low power consumption, light weight, simple fabrication, and conserved mobility without the necessity of a dedicated water cooling system.

Materials and methods

The entire magnetic resonance imaging (MRI) system (electromagnet, gradient system, transmit/receive coil, control system) is introduced and its unique features discussed. Furthermore, simulations using a numerical optimization algorithm for magnet and gradient system are presented.

Results

Functionality and quality of this low-field scanner operating at 23 mT (generated with 500 W) is illustrated using spin-echo imaging (in-plane resolution 1.6 mm × 1.6 mm, slice thickness 5 mm, and signal-to-noise ratio (SNR) of 23 with a acquisition time of 29 min). B0 field-mapping measurements are presented to characterize the homogeneity of the magnet, and the B0 field limitations of 80 mT of the system are fully discussed.

Conclusion

The cryogen-free system presented here demonstrates that this electromagnet with a ferromagnetic housing can be optimized for MRI with an enhanced and homogeneous magnetic field. It offers an alternative to prepolarized MRI designs in both readout field strength and power use. There are multiple indications for the clinical medical application of such low-field devices.
  相似文献   

9.

Purpose

To evaluate the function of an active implantable medical device (AIMD) during magnetic resonance imaging (MRI) scans. The induced voltages caused by the switching of magnetic field gradients and rectified radio frequency (RF) pulse were measured, along with the AIMD stimulations.

Materials and methods

An MRI-compatible voltage probe with a bandwidth of 0–40 kHz was designed. Measurements were carried out both on the bench with an overvoltage protection circuit commonly used for AIMD and with a pacemaker during MRI scans on a 1.5 T (64 MHz) MR scanner.

Results

The sensor exhibits a measurement range of?±?15 V with an amplitude resolution of 7 mV and a temporal resolution of 10 µs. Rectification was measured on the bench with the overvoltage protection circuit. Linear proportionality was confirmed between the induced voltage and the magnetic field gradient slew rate. The pacemaker pacing was recorded successfully during MRI scans.

Conclusion

The characteristics of this low-frequency voltage probe allow its use with extreme RF transmission power and magnetic field gradient positioning for MR safety test of AIMD during MRI scans.
  相似文献   

10.

Objective

Here we develop a three-dimensional analytic model for MR image contrast of collagen lamellae in the annulus fibrosus of the intervertebral disc of the spine, based on the dependence of the MRI signal on collagen fiber orientation.

Materials and methods

High-resolution MRI scans were performed at 1.5 and 7 T on intact whole disc specimens from ovine, bovine, and human spines. An analytic model that approximates the three-dimensional curvature of the disc lamellae was developed to explain inter-lamellar contrast and intensity variations in the annulus. The model is based on the known anisotropic dipolar relaxation of water in tissues with ordered collagen.

Results

Simulated MRI data were generated that reproduced many features of the actual MRI data. The calculated inter-lamellar image contrast demonstrated a strong dependence on the collagen fiber angle and on the circumferential location within the annulus.

Conclusion

This analytic model may be useful for interpreting MR images of the disc and for predicting experimental conditions that will optimize MR image contrast in the annulus fibrosus.
  相似文献   

11.

Objectives

The purpose of this study was to assess the reproducibility of substantia nigra pars compacta (SNpc) and locus coeruleus (LC) delineation and measurement with neuromelanin-sensitive MRI.

Materials and methods

Eleven subjects underwent two neuromelanin-sensitive MRI scans. SNpc and LC volumes were extracted for each scan. Reproducibility of volume and magnetization transfer contrast measurements in SNpc and LC was assessed using intraclass correlation coefficients (ICC) and dice similarity coefficients (DSC).

Results

SNpc and LC volume measurements showed excellent reproducibility (SNpc-ICC: 0.94, p < 0.001; LC-ICC: 0.96, p < 0.001). SNpc and LC were accurately delineated between scans (SNpc-DSC: 0.80 ± 0.03; LC-DSC: 0.63 ± 0.07).

Conclusion

Neuromelanin-sensitive MRI can consistently delineate SNpc and LC.
  相似文献   

12.

Object

The objective of this study is to propose a modified VARiable PROjection (VARPRO) algorithm specifically tailored for fitting the intravoxel incoherent motion (IVIM) model to diffusion-weighted magnetic resonance imaging (DW-MRI) data from locally advanced rectal cancer (LARC).

Materials and methods

The proposed algorithm is compared with classical non-linear least squares (NLLS) analysis using the Levenberg-Marquardt (LM) algorithm and with two recently proposed algorithms for ‘segmented’ analysis. These latter two comprise two consecutive steps: first, a subset of parameters is estimated using a portion of data; second, the remaining parameters are estimated using the whole data and the previous estimates. The comparison between the algorithms was based on the \(R^2\) goodness-of-fit measure: performance analysis was carried out on real data obtained by DW-MRI on 40 LARC patients.

Results

The performance of the proposed algorithm was higher than that of LM in 64 % of cases; ‘segmented’ methods were poorer than our algorithm in 100 % of cases.

Conclusion

The proposed modified VARPRO algorithm can lead to better fit of the IVIM model to LARC DW-MRI data compared to other techniques.
  相似文献   

13.

Objectives

The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup.

Materials and methods

A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared.

Results

Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m3 while through-plane velocities were similar between all valves.

Conclusion

Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
  相似文献   

14.

Object

We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting.

Materials and methods

Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions.

Results

In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume).

Conclusions

The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
  相似文献   

15.

Objective

Ultrahigh field MRI provides great opportunities for medical diagnostics and research. However, ultrahigh field MRI also brings challenges, such as larger magnetic susceptibility induced field changes. Parallel-transmit radio-frequency pulses can ameliorate these complications while performing advanced tasks in routine applications. To address one class of such pulses, we propose an optimal-control algorithm as a tool for designing advanced multi-dimensional, large flip-angle, radio-frequency pulses. We contrast initial conditions, constraints, and field correction abilities against increasing pulse trajectory acceleration factors.

Materials and methods

On an 8-channel 7T system, we demonstrate the quasi-Newton algorithm with pulse designs for reduced field-of-view imaging with an oil phantom and in vivo with scans of the human brain stem. We used echo-planar imaging with 2D spatial-selective pulses. Pulses are computed sufficiently rapid for routine applications.

Results

Our dataset was quantitatively analyzed with the conventional mean-square-error metric and the structural-similarity index from image processing. Analysis of both full and reduced field-of-view scans benefit from utilizing both complementary measures.

Conclusion

We obtained excellent outer-volume suppression with our proposed method, thus enabling reduced field-of-view imaging using pulse trajectory acceleration factors up to 4.
  相似文献   

16.

Objectives

Spin dephasing of the local magnetization in blood vessel networks can be described in the static dephasing regime (where diffusion effects may be ignored) by the established model of Yablonskiy and Haacke. However, for small capillary radii, diffusion phenomena for spin-bearing particles are not negligible.

Material and methods

In this work, we include diffusion effects for a set of randomly distributed capillaries and provide analytical expressions for the transverse relaxation times T2* and T2 in the strong collision approximation and the Gaussian approximation that relate MR signal properties with microstructural parameters such as the mean local capillary radius.

Results

Theoretical results are numerically validated with random walk simulations and are used to calculate capillary radius distribution maps for glioblastoma mouse brains at 9.4 T. For representative tumor regions, the capillary maps reveal a relative increase of mean radius for tumor tissue towards healthy brain tissue of \(128 \pm 23 \%\) (p < 0.001).

Conclusion

The presented method may be used to quantify angiogenesis or the effects of antiangiogenic therapy in tumors whose growth is associated with significant microvascular changes.
  相似文献   

17.

Objectives

In order to introduce 4D flow magnetic resonance imaging (MRI) as a standard clinical instrument for studying the cerebrovascular system, new and faster postprocessing tools are necessary. The objective of this study was to construct and evaluate a method for automatic identification of individual cerebral arteries in a 4D flow MRI angiogram.

Materials and methods

Forty-six elderly individuals were investigated with 4D flow MRI. Fourteen main cerebral arteries were manually labeled and used to create a probabilistic atlas. An automatic atlas-based artery identification method (AAIM) was developed based on vascular-branch extraction and the atlas was used for identification. The method was evaluated by comparing automatic with manual identification in 4D flow MRI angiograms from 67 additional elderly individuals.

Results

Overall accuracy was 93 %, and internal carotid artery and middle cerebral artery labeling was 100 % accurate. Smaller and more distal arteries had lower accuracy; for posterior communicating arteries and vertebral arteries, accuracy was 70 and 89 %, respectively.

Conclusion

The AAIM enabled fast and fully automatic labeling of the main cerebral arteries. AAIM functionality provides the basis for creating an automatic and powerful method to analyze arterial cerebral blood flow in clinical routine.
  相似文献   

18.

Objectives

The goal of this study was to quantify CEST related parameters such as chemical exchange rate and fractional concentration of exchanging protons at a clinical 3T scanner. For this purpose, two CEST quantification approaches—the AREX metric (for ‘apparent exchange dependent relaxation’), and the AREX-based Ω-plot method were used. In addition, two different pulsed RF irradiation schemes, using Gaussian-shaped and spin-lock pulses, were compared.

Materials and methods

Numerical simulations as well as MRI measurements in phantoms were performed. For simulations, the Bloch–McConnell equations were solved using a two-pool exchange model. MR experiments were performed on a clinical 3T MRI scanner using a cylindrical phantom filled with creatine solution at different pH values and different concentrations.

Results

The validity of the Ω-plot method and the AREX approach using spin-lock preparation for determination of the quantitative CEST parameters was demonstrated. Especially promising results were achieved for the Ω-plot method when the spin-lock preparation was employed.

Conclusion

Pulsed CEST at 3T could be used to quantify parameters such as exchange rate constants and concentrations of protons exchanging with free water. In the future this technique might be used to estimate the exchange rates and concentrations of biochemical substances in human tissues in vivo.
  相似文献   

19.

Objective

Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared.

Materials and methods

Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated.

Results

The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased.

Conclusion

A robust method for estimating the position of the PSF peak has been introduced.
  相似文献   

20.

Objective

Simultaneous modeling of true 2-D spectroscopy data, or more generally, interrelated spectral datasets has been described previously and is useful for quantitative magnetic resonance spectroscopy applications. In this study, a combined method of reference-lineshape enhanced model fitting and two-dimensional prior-knowledge fitting for the case of diffusion weighted MR spectroscopy is presented.

Materials and methods

Time-dependent field distortions determined from a water reference are applied to the spectral bases used in linear-combination modeling of interrelated spectra. This was implemented together with a simultaneous spectral and diffusion model fitting in the previously described Fitting Tool for Arrays of Interrelated Datasets (FiTAID), where prior knowledge conditions and restraints can be enforced in two dimensions.

Results

The benefit in terms of increased accuracy and precision of parameters is illustrated with examples from Monte Carlo simulations, in vitro and in vivo human brain scans for one- and two-dimensional datasets from 2-D separation, inversion recovery and diffusion-weighted spectroscopy (DWS). For DWS, it was found that acquisitions could be substantially shortened.

Conclusion

It is shown that inclusion of a measured lineshape into modeling of interrelated MR spectra is beneficial and can be combined also with simultaneous spectral and diffusion modeling.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号