首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC.

Materials and methods

The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo.

Results

Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm.

Conclusion

Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.
  相似文献   

2.

Objective

Multi-component T2 relaxation allows for assessing the myelin water fraction in nervous tissue, providing a surrogate marker for demyelination. The assessment of the number and distribution of different T2 components for devising exact models of tissue relaxation has been limited by T2 sampling with conventional MR methods.

Materials and methods

A T2-prepared UTE sequence was used to assess multicomponent T2 relaxation at 9.4 T of fixed mouse and rat spinal cord samples and of mouse spinal cord in vivo. For in vivo scans, a cryogenically cooled probe allowed for 78-µm resolution in 1-mm slices. Voxel-wise non-negative least square analysis was used to assess the number of myelin water-associated T2 components.

Results

More than one myelin water-associated T2 component was detected in only 12 % of analyzed voxels in rat spinal cords and 6 % in mouse spinal cords, both in vivo and in vitro. However, myelin water-associated T2 values of individual voxels varied between 0.1 and 20 ms. While in fixed samples almost no components below 1 ms were identified, in vivo, these contributed 14 % of the T2 spectrum. No significant differences in MWF were observed in mouse spinal cord in vivo versus ex vivo measurements.

Conclusion

Voxel-wise analysis methods using relaxation models with one myelin water-associated T2 component are appropriate for assessing myelin content of nervous tissue.
  相似文献   

3.

Object

To present and evaluate a fast phosphorus magnetic resonance spectroscopic imaging (MRSI) sequence using echo planar spectroscopic imaging with flyback readout gradient trajectories.

Materials and Methods

Waveforms were designed and implemented using a 3 Tesla MRI system. 31P spectra were acquired with 2 × 2 cm2 and 3 × 3 cm2 resolution over a 20- and 21-cm field of view and spectral bandwidths up to 1923 Hz. The sequence was first tested using a 20-cm-diameter phosphate phantom, and subsequent in vivo tests were performed on healthy human calf muscles and brains from five volunteers.

Results

Flyback EPSI achieved 10× and 7× reductions in acquisition time, with 68.0 ± 1.2 and 69.8 ± 2.2% signal-to-noise ratio (SNR) per unit of time efficiency (theoretical SNR efficiency was 74.5 and 76.4%) for the in vivo experiments, compared to conventional phase-encoded MRSI for the 2 × 2 cm2 and 3 × 3 cm2 resolution waveforms, respectively. Statistical analysis showed no difference in the quantification of most metabolites. Time savings and SNR comparisons were consistent across phantom, leg and brain experiments.

Conclusion

EPSI using flyback readout trajectories was found to be a reliable alternative for acquiring 31P-MRSI data in a shorter acquisition time.
  相似文献   

4.

Objective

A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods.

Materials and methods

Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence.

Results

Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look–Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms.

Conclusion

This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.
  相似文献   

5.

Objective and methods

A radiofrequency (RF) pulse design technique is presented that uses iterative constrained minimization to determine Fourier domain coefficients for an optimal time domain RF pulse. The design of new RF pulses is especially beneficial for field strengths of 7.0 T and above, where challenges pertaining to specific absorption rate (SAR) are exacerbated.

Results and conclusion

A pair of 90° and 180° spin-echo pulses was designed to lower SAR without the need for a variable slice gradient. The optimized pulses were deployed to a 7.0 T human scanner to demonstrate a reduction in SAR while retaining signal-to-noise (SNR) ratio.
  相似文献   

6.

Objective

To use high-permittivity materials (HPM) positioned near radiofrequency (RF) surface coils to manipulate transmit/receive field patterns.

Materials and methods

A large HPM pad was placed below the RF coil to extend the field of view (FOV). The resulting signal-to-noise ratio (SNR) was compared with that of other coil configurations covering the same FOV in simulations and experiments at 7 T. Transmit/receive efficiency was evaluated when HPM discs with or without a partial shield were positioned at a distance from the coil. Finally, we evaluated the increase in transmit homogeneity for a four-channel array with HPM discs interposed between adjacent coil elements.

Results

Various configurations of HPM increased SNR, transmit/receive efficiency, excitation/reception sensitivity overlap, and FOV when positioned near a surface coil. For a four-channel array driven in quadrature, shielded HPM discs enhanced the field below the discs as well as at the center of the sample as compared with other configurations with or without unshielded HPM discs.

Conclusion

Strategically positioning HPM at a distance from a surface coil or array can increase the overlap between excitation/reception sensitivities, and extend the FOV of a single coil for reduction of the number of channels in an array while minimally affecting the SNR.
  相似文献   

7.

Objective

To demonstrate imaging performance for cardiac MR imaging at 7 T using a coil array of 8 transmit/receive dipole antennas and 16 receive loops.

Materials and methods

An 8-channel dipole array was extended by adding 16 receive-only loops. Average power constraints were determined by electromagnetic simulations. Cine imaging was performed on eight healthy subjects. Geometrical factor (g-factor) maps were calculated to assess acceleration performance. Signal-to-noise ratio (SNR)-scaled images were reconstructed for different combinations of receive channels, to demonstrate the SNR benefits of combining loops and dipoles.

Results

The overall image quality of the cardiac functional images was rated a 2.6 on a 4-point scale by two experienced radiologists. Imaging results at different acceleration factors demonstrate that acceleration factors up to 6 could be obtained while keeping the average g-factor below 1.27. SNR maps demonstrate that combining loops and dipoles provides a more than 50% enhancement of the SNR in the heart, compared to a situation where only loops or dipoles are used.

Conclusion

This work demonstrates the performance of a combined loop/dipole array for cardiac imaging at 7 T. With this array, acceleration factors of 6 are possible without increasing the average g-factor in the heart beyond 1.27. Combining loops and dipoles in receive mode enhances the SNR compared to receiving with loops or dipoles only.
  相似文献   

8.

Objective

Ultrahigh field MRI provides great opportunities for medical diagnostics and research. However, ultrahigh field MRI also brings challenges, such as larger magnetic susceptibility induced field changes. Parallel-transmit radio-frequency pulses can ameliorate these complications while performing advanced tasks in routine applications. To address one class of such pulses, we propose an optimal-control algorithm as a tool for designing advanced multi-dimensional, large flip-angle, radio-frequency pulses. We contrast initial conditions, constraints, and field correction abilities against increasing pulse trajectory acceleration factors.

Materials and methods

On an 8-channel 7T system, we demonstrate the quasi-Newton algorithm with pulse designs for reduced field-of-view imaging with an oil phantom and in vivo with scans of the human brain stem. We used echo-planar imaging with 2D spatial-selective pulses. Pulses are computed sufficiently rapid for routine applications.

Results

Our dataset was quantitatively analyzed with the conventional mean-square-error metric and the structural-similarity index from image processing. Analysis of both full and reduced field-of-view scans benefit from utilizing both complementary measures.

Conclusion

We obtained excellent outer-volume suppression with our proposed method, thus enabling reduced field-of-view imaging using pulse trajectory acceleration factors up to 4.
  相似文献   

9.

Objective

An endoluminal magnetic resonance (MR) imaging protocol including the design of an endoluminal coil (EC) was defined for high-spatial-resolution MR imaging of mice gastrointestinal walls at 4.7 T.

Materials and methods

A receive-only radiofrequency single-loop coil was developed for mice colon wall imaging. Combined with a specific protocol, the prototype was first characterized in vitro on phantoms and on vegetables. Signal-to-noise ratio (SNR) profiles were compared with a quadrature volume birdcage coil (QVBC). Endoluminal MR imaging protocol combined with the EC was assessed in vivo on mice.

Results

The SNR measured close to the coil is significantly higher (10 times and up to 3 mm of the EC center) than the SNR measured with the QVBC. The gain in SNR can be used to reduce the in-plane pixel size up to 39 × 39 µm2 (234 µm slice thickness) without time penalty. The different colon wall layers can only be distinguished on images acquired with the EC.

Conclusion

Dedicated EC provides suitable images for the assessment of mice colon wall layers. This proof of concept provides gains in spatial resolution and leads to adequate protocols for the assessment of human colorectal cancer, and can now be used as a new imaging tool for a better understanding of the pathology.
  相似文献   

10.

Objectives

We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences.

Materials and methods

Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences.

Results

The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences.

Conclusion

This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.
  相似文献   

11.

Objective

Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared.

Materials and methods

Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated.

Results

The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased.

Conclusion

A robust method for estimating the position of the PSF peak has been introduced.
  相似文献   

12.

Objective

Our aim was to investigate the technical feasibility of a novel motion compensation method for cardiac magntic resonance (MR) T1 and extracellular volume fraction (ECV) mapping.

Materials and methods

Native and post-contrast T1 maps were obtained using modified look-locker inversion recovery (MOLLI) pulse sequences with acquisition scheme defined in seconds. A nonrigid, nonparametric, fast elastic registration method was applied to generate motion-corrected T1 maps and subsequently ECV maps. Qualitative rating was performed based on T1 fitting-error maps and overlay images. Local deformation vector fields were produced for quantitative assessment. Intra- and inter-observer reproducibility were compared with and without motion compensation.

Results

Eighty-two T1 and 39 ECV maps were obtained in 21 patients with diverse myocardial diseases. Approximately 60% demonstrated clear quality improvement after motion correction for T1 mapping, particularly for the poor-rating cases (23% before vs 2% after). Approximately 67% showed further improvement with co-registration in ECV mapping. Although T1 and ECV values were not clinically significantly different before and after motion compensation, there was improved intra- and inter-observer reproducibility after motion compensation.

Conclusions

Automated motion correction and co-registration improved the qualitative assessment and reproducibility of cardiac MR T1 and ECV measurements, allowing for more reliable ECV mapping.
  相似文献   

13.

Objective

Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue.

Materials and methods

Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together.

Results

The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested.

Conclusion

The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
  相似文献   

14.

Objectives

The accuracy and precision of the parallel RF excitations are highly dependent on the spatial and temporal fidelity of the magnetic fields involved in spin excitation. The consistency between the nominal and effective fields is typically limited by the imperfections of the employed hardware existing both in the gradient system and the RF chain. In this work, we experimentally presented highly improved spatially tailored parallel excitations by turning the native hardware accuracy challenge into a measurement and control problem using an advanced field camera technology to fully correct parallel RF transmission experiment.

Materials and methods

An array of NMR field probes is used to measure the multiple channel RF pulses and gradient waveforms recording the high power RF pulses simultaneously with low frequency gradient fields on equal time basis. The recorded waveforms were integrated in RF pulse design for gradient trajectory correction, time imperfection compensation and introduction of iterative RF pre-emphasis.

Results

Superior excitation accuracy was achieved. Two major applications were presented at 7 Tesla including multi-dimensional tailored RF pulses for spatially selective excitation and slice-selective spoke pulses for \(B_{1}^{ + }\) mitigation.

Conclusion

Comprehensive field monitoring is a highly effective means of correcting for the field deviations during parallel transmit pulse design.
  相似文献   

15.

Objective

This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials and methods

The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites.

Results

Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites.

Conclusion

Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
  相似文献   

16.

Objectives

We present a method based on a proposed statistical definition of white matter hyperintensities (WMH), which can work with any combination of conventional magnetic resonance (MR) sequences without depending on manually delineated samples.

Materials and methods

T1-weighted, T2-weighted, FLAIR, and PD sequences acquired at 1.5 Tesla from 119 subjects from the Kings Health Partners-Dementia Case Register (healthy controls, mild cognitive impairment, Alzheimer’s disease) were used. The segmentation was performed using a proposed definition for WMH based on the one-tailed Kolmogorov–Smirnov test.

Results

The presented method was verified, given all possible combinations of input sequences, against manual segmentations and a high similarity (Dice 0.85–0.91) was observed. Comparing segmentations with different input sequences to one another also yielded a high similarity (Dice 0.83–0.94) that exceeded intra-rater similarity (Dice 0.75–0.91). We compared the results with those of other available methods and showed that the segmentation based on the proposed definition has better accuracy and reproducibility in the test dataset used.

Conclusion

Overall, the presented definition is shown to produce accurate results with higher reproducibility than manual delineation. This approach can be an alternative to other manual or automatic methods not only because of its accuracy, but also due to its good reproducibility.
  相似文献   

17.

Objectives

Reproducibility of myocardial contour determination in cardiac magnetic resonance imaging is important, especially when determining T2* values per myocardial segment as a prognostic factor of heart failure or thalassemia. A method creating a composite image with contrasts optimized for drawing myocardial contours is introduced and compared with the standard method on a single image.

Materials and methods

A total of 36 short-axis slices from bright-blood multigradient echo (MGE) T2* scans of 21 patients were acquired at eight echo times. Four observers drew free-hand myocardial contours on one manually selected T2* image (method 1) and on one image composed by blending three images acquired at TEs providing optimum contrast-to-noise ratio between the myocardium and its surrounding regions (method 2).

Results

Myocardial contouring by method 2 met higher interobserver reproducibility than method 1 (P < 0.001) with smaller Coefficient of variance (CoV) of T2* values in the presence of myocardial iron accumulation (9.79 vs. 15.91 %) and in both global myocardial and mid-ventricular septum regions (12.29 vs. 16.88 and 5.76 vs. 8.16 %, respectively).

Conclusion

The use of contrast-optimized composite images in MGE data analysis improves reproducibility of myocardial contour determination, leading to increased consistency in the calculated T2* values enhancing the diagnostic impact of this measure of iron overload.
  相似文献   

18.

Objectives

To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA).

Materials and methods

A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth.

Results

In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra.

Conclusion

The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.
  相似文献   

19.

Object

To develop an improved short tau inversion recovery (iSTIR) technique with simultaneous suppression of fat, blood vessels and fluid to increase tumor conspicuity in the abdomen for cancer screening.

Materials and methods

An adiabatic spectrally selective inversion pulse was used for fat suppression to overcome the reduced signal to noise ratio associated with chemically non-selective inversion pulse of STIR. A motion-sensitizing driven equilibrium was used for blood vessel suppression and a dual-echo single-shot fast spin echo acquisition was used for fluid suppression. The technique was optimized on four normal subjects and later tested on five patients referred for metastatic tumor evaluation.

Results

A velocity encoding of 2 cm/s achieved effective blood suppression even in small vessels. Subtraction of two images (one with 60 ms and the other with 280 ms echo time) acquired in the same echo train achieved excellent fluid suppression (>70 % reduction). Simultaneous suppression of fat, blood vessels and fluid improved the tumor conspicuity compared to corresponding fat-suppressed (STIR) image.

Conclusion

This technique generated two complementary images from a single scan: one that is equivalent to a STIR image and the other that qualitatively resembles a diffusion-weighted image and may have potential for magnetic resonance imaging cancer screening.
  相似文献   

20.

Objective

We demonstrate the potential clinical utility of a 4D non-gadolinium dynamic angiography technique based on arterial spin-labeling called contrast inherent inflow enhanced multi-phase angiography (CINEMA) in pediatric patients.

Materials and Methods

CINEMA was qualitatively compared to conventional time-of-flight (TOF) angiography in a cohort of 31 pediatric patients at 3 Tesla.

Results

CINEMA data were successfully acquired and reconstructed in all patients with no image artifacts. There were no cases where CINEMA was rated inferior to TOF in depicting intracranial vessel conspicuity. In 19 cases, CINEMA was rated equivalent to TOF and in the 12 remaining cases CINEMA was rated superior to TOF.

Conclusion

There is a steadily rising concern in adults and children over the potential effects of intracranial deposition of gadolinium. CINEMA is therefore a viable alternative in dynamic neurovascular imaging.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号