首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

To segment and classify the different attenuation regions from MRI at the pelvis level using the T 1 and T 2 relaxation times and anatomical knowledge as a first step towards the creation of PET/MR attenuation maps.

Materials and methods

Relaxation times were calculated by fitting the pixel-wise intensities of acquired T 1- and T 2-weighted images from eight men with inversion-recovery and multi-echo multi-slice spin-echo sequences. A decision binary tree based on relaxation times was implemented to segment and classify fat, muscle, prostate, and air (within the body). Connected component analysis and an anatomical knowledge-based procedure were implemented to localize the background and bone.

Results

Relaxation times at 3 T are reported for fat (T 1 = 385 ms, T 2 = 121 ms), muscle (T 1 = 1295 ms, T 2 = 40 ms), and prostate (T 1 = 1700 ms, T 2 = 80 ms). The relaxation times allowed the segmentation–classification of fat, prostate, muscle, and air, and combined with anatomical knowledge, they allowed classification of bone. The good segmentation–classification of prostate [mean Dice similarity score (mDSC) = 0.70] suggests a viable implementation in oncology and that of fat (mDSC = 0.99), muscle (mDSC = 0.99), and bone (mDSCs = 0.78) advocates for its implementation in PET/MR attenuation correction.

Conclusion

Our method allows the segmentation and classification of the attenuation-relevant structures required for the generation of the attenuation map of PET/MR systems in prostate imaging: air, background, bone, fat, muscle, and prostate.
  相似文献   

2.

Objectives

For turbo spin echo (TSE) sequences to be useful at ultra-high field, they should ideally employ an RF pulse train compensated for the B 1 + inhomogeneity. Previously, it was shown that a single kT-point pulse designed in the small tip-angle regime can replace all the pulses of the sequence (static kT-points). This work demonstrates that the B 1 + dependence of T 2-weighted imaging can be further mitigated by designing a specific kT-point pulse for each pulse of a 3D TSE sequence (dynamic kT-points) even on single-channel transmit systems

Materials and methods

By combining the spatially resolved extended phase graph formalism (which calculates the echo signals throughout the sequence) with a gradient descent algorithm, dynamic kT-points were optimized such that the difference between the simulated signal and a target was minimized at each echo. Dynamic kT-points were inserted into the TSE sequence to acquire in vivo images at 7T.

Results

The improvement provided by the dynamic kT-points over the static kT-point design and conventional hard pulses was demonstrated via simulations. Images acquired with dynamic kT-points showed systematic improvement of signal and contrast at 7T over regular TSE—especially in cerebellar and temporal lobe regions without the need of parallel transmission.

Conclusion

Designing dynamic kT-points for a 3D TSE sequence allows the acquisition of T 2-weighted brain images on a single-transmit system at ultra-high field with reduced dropout and only mild residual effects due to the B 1 + inhomogeneity.
  相似文献   

3.
This paper describes imaging of lung function with oxygen-enhanced MRI using dynamically acquired T 1 parameter maps, which allows an accurate, quantitative assessment of time constants of T 1-enhancement and therefore lung function. Eight healthy volunteers were examined on a 1.5-T whole-body scanner. Lung T 1-maps based on an IR Snapshot FLASH technique (TE = 1.4 ms, TR = 3.5 ms, FA = 7 ) were dynamically acquired from each subject. Without waiting for full relaxation between subsequent acquisition of T 1-maps, one T 1-map was acquired every 6.7 s. For comparison, all subjects underwent a standard pulmonary function test (PFT). Oxygen wash-in and wash-out time course curves of T 1 relaxation rate (R 1)-enhancement were obtained and time constants of oxygen wash-in (w in) and wash-out (w out) were calculated. Averaged over the whole right lung, the mean w out was 43.90 ± 10.47 s and the mean (w in) was 51.20 ± 15.53 s, thus about 17% higher in magnitude. Wash-in time constants correlated strongly with forced expired volume in one second in percentage of the vital capacity (FEV1 % VC) and with maximum expiratory flow at 25% vital capacity (MEF25), whereas wash-out time constants showed only weak correlation. Using oxygen-enhanced rapid dynamic acquisition of T 1-maps, time course curves of R 1-enhancement can be obtained. With w in and w out two new parameters for assessing lung function are available. Therefore, the proposed method has the potential to provide regional information of pulmonary function in various lung diseases.  相似文献   

4.

Objective

Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R2*(= 1/T2*) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R2*, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R1 (= 1/T1), as well as the apparent water content.

Materials and methods

For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R1 and apparent water content.

Results

The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field.

Conclusion

These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R1 and apparent water content in white matter.
  相似文献   

5.
In variable speed applications of high-power induction motors, current source inverters are usually used instead of voltage source inverters. Power switches delay and switching losses in high-power ranges, prevents inverters to operate properly in high frequencies. So the voltage and current waveforms of the motor supply consist of high harmonic content causing a high-torque ripple. One of the parameters that influences the torque ripple most is the stator flux reference value. Motors do not usually operate in their nominal load. Therefore, the optimum value of the flux is not equal to the nominal value. In this paper, an optimal i sx reference for vector control system of current source inverter fed induction motor is produced by applying a simple estimator. Simulation results show that torque ripple has been reduced, especially in the loads less than their nominal power, as significantly as power factor has been improved. Also flux reduction causes to noticeable reduction in core and switching losses.  相似文献   

6.
Object A novel method of estimating metabolite T 1 relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T 1 estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T 1 by taking advantage of the spatial distribution information provided by MRSI. Material and methods The method, validated by Monte Carlo studies, involves a voxel averaging to preserve the GM/WM distribution, a non-linear least squares fit of the metabolite T 1 and an estimation of its standard error by bootstrapping. It was applied in vivo to estimate the T 1 of N-acetyl compounds (NAA), choline, creatine and myo-inositol in eight normal volunteers, at 1.5 T, using a short echo time 2D-MRSI slice located above the ventricles. Results WM-T 1,NAA was significantly (P < 0.05) longer in anterior regions compared to posterior regions of the brain. The anterior region showed a trend of a longer WM T 1 compared to GM for NAA, creatine and myo-Inositol. Lastly, accounting for the bootstrapped standard error estimate in a group mean T 1 calculation yielded a more accurate T 1 estimation. Conclusion The method successfully measured in vivo metabolite T 1 using MRSI and can now be applied to diseased brain.  相似文献   

7.
OBJECTIVE: To measure the T1 times in blood after the administration of the intravascular contrast agent gadofosveset trisodium in humans. MATERIALS AND METHODS: In a pilot study for parameter optimization, the T1-shortening induced by the injection of a single dose (0.03 mmol/kg body weight) of the MR contrast agent Vasovist (Bayer Schering Pharma AG) was measured at B (0) = 1.5 T as a function of time. In four sessions, T1 measurements were performed in the carotid vein of 9 volunteers up to 30 min after injection. T1 times were measured using a segmented saturation recovery turboFLASH (SSRTFL) pulse sequence with 7 different saturation recovery delay times in a total acquisition time of 20 s. RESULTS: The SSRTFL measurements showed T1 times of about 100 ms immediately after injection, which gradually increased to 175 ms at 30 min. The time curve of the R1 = 1/T1 averaged over all volunteers could be described with an exponential decay with a time constant T = 330 +/- 65 s and an amplitude DeltaR1 = 4.1 +/- 0.3 s(-1), and a constant offset of R1(0) = 5.7 +/- 0.2 s(-1). Mean relaxation values are in excellent agreement with theoretical predictions. CONCLUSION: An analytical expression for the initial T1-shortening of Vasovist was derived which can now be used for optimization of the pulse sequence parameters in clinical studies.  相似文献   

8.
(1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 (BFN-xBY) ceramics were prepared by a conventional solid-state reaction method. The dielectric properties and relaxation behavior of BFN-xBY ceramics were analyzed according to dielectric and impedance spectroscopy. Dielectric permittivity of the ceramics increases with increasing temperature below 500 K then remains unchanged up to 700 K, while corresponding loss factor decreases with the increase of temperature below 500 K then increase slowly. Defect compensation mechanism of this system was analyzed in detail. The giant dielectric behavior of the ceramics arises from the internal barrier layer capacitor (IBLC) effect. Polarization effect at insulating grain boundaries between semiconducting grains accompanied by a strong Maxwell-Wagner (MW) relaxation mode. The characteristic of grain boundaries was revealed using impedance spectroscope and the universal dielectric response law.  相似文献   

9.
Mapping of the longitudinal relaxation time (T 1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T 1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson-Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T 1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T 1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T 1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field.  相似文献   

10.

Objectives

Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T 1 mapping versus assessment at a single ventricular level.

Materials and methods

For assessment of T 1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T 1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T 1, allowing calculation of partition coefficient and ECV. To assess correlation of T 1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction.

Results

A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T 1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R 2 = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T 1 mapping.

Conclusion

T 1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T 1/ECV might affect clinical management.
  相似文献   

11.
An approximate analytical method is proposed to calculate the electromagnetic field of a magnetoelectric induction heating plant using a stage substitution circuit formed based on a comparison of the general laws and methods of the computation of electromagnetic field in a conducting medium and methods of the circuit theory for the sinusoidal current.  相似文献   

12.
Topological features and calculation relationships are considered for a 12n-phase converter with a multistage configuration of six-phase asymmetric voltage systems of secondary transformer windings. An example of a synthesized circuit of the phase number and shift converter is given for a 24-pulse rectifier recommended for use in networks with distorting factors.  相似文献   

13.
The signal-to-noise ratio (SNR) of hyperpolarized noble gas MR images is sensitive to the flip angle used. Variations in flip angle due to B 1-inhomogeneity of the RF coil cause intensity variation artifacts in lung ventilation images which may mask or mimic disease. We show these artifacts can be minimized by using the optimal flip angle and corrected if the local flip angle is known. Hyperpolarized 3He lung images were obtained in ten healthy subjects using both a conventional gradient-echo sequence and a new hybrid pulse sequence designed to simultaneously acquire lung ventilation images and corresponding flip-angle maps in comparable imaging time. Flip-angle maps and corrected images were calculated from the hybrid scan and compared with conventional images. The qualitative theoretical dependence of flip angle on SNR was verified. Ventilation images and flip-angle maps were successfully obtained with the hybrid sequence. Corrections to image intensity calculated from the flip-angle maps appeared reasonable for images acquired using an average flip angle near optimal. Use of the optimal flip angle is crucial to the quality of lung ventilation images. Artifactual intensity variations due to RF-coil inhomogeneity may be identified and potentially corrected using our hybrid sequence. Acknowledgement The authors thank John M. Christopher, RT(R)(MR) for valuable assistance performing the studies, and Jaime F. Mata, MS, Jing Cai, MS, and Andrew G. Reish, BS, for excellent operation of the 3He polarization system. We gratefully acknowledge support for this research from the Commonwealth of Virginia Technology Research Fund (Grant No. IN2002-01), Siemens Medical Solutions and Amersham Health.  相似文献   

14.
Here we discuss the effect of preparation conditions on structural stability and electrical properties of Sr-deficient n-type SrTiO3. In particular, an explanation of a wide scatter of conductivity values in Y- and Nb-doped SrTiO3. reported in the literature is proposed, based on the existing defect chemistry model of n-doped SrTiO3. It was confirmed that when sintered in air, Sr-deficient SrTiO3 doped with Nb and/or Y, remains single phase until the solubility limit (e.g., 30% for Nb or 4% for Y). However, when sintered at low po2, the material transforms from a vacancy compensated to an electronically compensated compound with a strontium deficient second phase. Measured at 800°C in low po2, the maximum conductivity of these multi-phase compounds was 340 S/cm and 100 S/cm for the Nb-doped and Y-doped sample, respectively. However, the conductivity dropped dramatically to less than 10 S/cm when samples of the same compositions were sintered in air, again measured in reducing atmosphere.  相似文献   

15.

Objective

Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging.

Materials and methods

TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2* systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo.

Results

An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2* mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h.

Conclusions

Accelerated TurboSPI enables preclinical R 2* mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.
  相似文献   

16.
Effect of glass addition on the low-temperature sintering and microwave dielectric properties of BaTi4O9-based ceramics were studied to develop the middle-k dielectric composition for the functional substrate of low-temperature co-fired ceramics. When 10 wt% of glass was added, sufficient densification was obtained and the relative density more than 98% was reached at the sintering temperature of 875C. The microwave dielectric properties were k = 32, Q × f = 9000 GHz, and tcf = 10 ppm/C. As the added amount of glass frit with base dielectric composition, phase changes from BaTi4O9 to BaTi5O11 and Ba4Ti13O30 was observed, which result in the modification of microwave dielectric properties.  相似文献   

17.
In this work are given results of analyzing processes of production of nitrogen oxides (NO x ) and afterburning of CO when firing natural gas at combined-cycle gas-turbine plants. It is shown that for suppressing emissions of the said microcomponents it is necessary to lower temperature in hot local zones of the flame in which NOx is formed, and, in so doing, to avoid chilling of cold flame zones that prevents afterburning of CO. The required lowering of the combustion temperature can be provided by combustion of mixtures of methane with steam, with high mixing uniformity that ensures the same and optimum fraction of the steam “ballast” in each microvolume of the flame. In addition to chilling, the steam ballast makes it possible to maintain a fairly high concentration of hydroxil radicals in the flame zone as well, and this provides high burning out of fuel and reduction in carbon monoxide emissions (active steam ballast). Due to this fact the fraction of steam when firing its mixtures with methane in a gas-turbine plant can be increased up to the weight ratio 4: 1. In this case, the concentrations of NO x and CO in emissions can be reduced to ultra-low values (less than 3 ppm).  相似文献   

18.

Objective

Prospective motion correction can effectively fix the imaging volume of interest. For large motion, this can lead to relative motion of coil sensitivities, distortions associated with imaging gradients and B 0 field variations. This work accounts for the B 0 field change due to subject movement, and proposes a method for correcting tissue magnetic susceptibility-related distortion in prospective motion correction.

Materials and methods

The B 0 field shifts at the different head orientations were characterized. A volunteer performed large motion with prospective motion correction enabled. The acquired data were divided into multiple groups according to the object positions. The correction of B 0-related distortion was applied to each group of data individually via augmented sensitivity encoding with additionally integrated gradient nonlinearity correction.

Results

The relative motion of the gradients, B 0 field and coil sensitivities in prospective motion correction results in residual spatial distortion, blurring, and coil artifacts. These errors can be mitigated by the proposed method. Moreover, iterative conjugate gradient optimization with regularization provided superior results with smaller RMSE in comparison to standard conjugate gradient.

Conclusion

The combined correction of B 0-related distortion and gradient nonlinearity leads to a reduction of residual motion artifacts in prospective motion correction data.
  相似文献   

19.

Objective

Arterial spin labelling (ASL) techniques benefit from the increased signal-to-noise ratio and the longer T 1 relaxation times available at ultra-high field. Previous pulsed ASL studies at 7 T concentrated on the superior regions of the brain because of the larger transmit radiofrequency inhomogeneity experienced at ultra-high field that hinders an adequate inversion of the blood bolus when labelling in the neck. Recently, researchers have proposed to overcome this problem with either the use of dielectric pads, through dedicated transmit labelling coils, or special adiabatic inversion pulses.

Materials and methods

We investigate the performance of an optimised time-resampled frequency-offset corrected inversion (TR-FOCI) pulse designed to cause inversion at much lower peak B 1 + . In combination with a PICORE labelling, the perfusion signal obtained with this pulse is compared against that obtained with a FOCI pulse, with and without dielectric pads.

Results

Mean grey matter perfusion with the TR-FOCI was 52.5 ± 10.3 mL/100 g/min, being significantly higher than the 34.6 ± 2.6 mL/100 g/min obtained with the FOCI pulse. No significant effect of the dielectric pads was observed.

Conclusion

The usage of the B 1 + -optimised TR-FOCI pulse results in a significantly higher perfusion signal. PICORE–ASL is feasible at ultra-high field with no changes to operating conditions.
  相似文献   

20.

Objective

Intravoxel incoherent motion (IVIM) shows great potential in many applications, e.g., tumor tissue characterization. To reduce image-quality demands, various IVIM analysis approaches restricted to the diffusion coefficient (D) and the perfusion fraction (f) are increasingly being employed. In this work, the impact of estimation approach for D and f is studied.

Materials and methods

Four approaches for estimating D and f were studied: segmented IVIM fitting, least-squares fitting of a simplified IVIM model (sIVIM), and Bayesian fitting of the sIVIM model using marginal posterior modes or posterior means. The estimation approaches were evaluated in terms of bias and variability as well as ability for differentiation between tumor and healthy liver tissue using simulated and in vivo data.

Results

All estimation approaches had similar variability and ability for differentiation and negligible bias, except for the Bayesian posterior mean of f, which was substantially biased. Combined use of D and f improved tumor-to-liver tissue differentiation compared with using D or f separately.

Discussion

The similar performance between estimation approaches renders the segmented one preferable due to lower numerical complexity and shorter computational time. Superior tissue differentiation when combining D and f suggests complementary biologically relevant information.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号