首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

2.
Posttranslational processing of chemokines increases (IL-8) or decreases (monocyte chemotactic protein-1) their chemotactic potency. Macrophage-derived chemokine (MDC) attracts monocytes, dendritic cells, activated lymphocytes, and NK cells and has reportedly anti-HIV-1 activity. Here we report that truncation of MDC by deletion of two NH2-terminal residues resulted in impaired binding to CC chemokine receptor (CCR)4, the only identified MDC receptor so far. Truncated MDC(3-69) failed to desensitize calcium mobilization by MDC(1-69) or thymus- and activation-regulated chemokine (TARC), another CCR4 ligand. MDC(3-69) lacked HUT-78 T cell chemotactic activity but retained its capacity to attract monocytes and to desensitize chemotaxis. Compared with MDC(1-69), MDC(3-69) had weak but enhanced antiviral activity against M- and T-tropic HIV-1 strains. Furthermore, both MDC forms failed to signal through the orphan receptors Bonzo/STRL33 and BOB/GPR15 and to desensitize RANTES and stromal cell-derived factor (SDF)-1 responses in CCR5-transfected and CXC chemokine receptor (CXCR)4-transfected cells, respectively. These findings suggest that MDC recognizes another, yet unidentified, receptor. We conclude that minimal NH2-terminal truncation of MDC differentially affects its various immunologic functions.  相似文献   

3.
4.
The capacity of dendritic cells (DC) to initiate immune responses is dependent on their specialized migratory and tissue homing properties. Chemotaxis and transendothelial migration (TEM) of DC were studied in vitro. Immature DC were generated by culture of human monocytes in granulocyte-macrophage colony-stimulating factor and IL-4. These cells exhibited potent chemotaxis and TEM responses to the CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, and monocyte chemotactic protein-3, and weak responses to the CC chemokine MIP-3beta and the CXC chemokine stromal cell-derived factor (SDF)-1alpha. Maturation of DC induced by culture in lipopolysaccharide, TNF-alpha or IL-1beta reduced or abolished responses to the former CC chemokines but markedly enhanced responses to MIP-3beta and SDF-1alpha. This correlated with changes in chemokine receptor expression: CCR5 expression was reduced while CXCR4 expression was enhanced. These findings suggest two stages for regulation of DC migration in which one set of chemokines may regulate recruitment into or within tissues, and another egress from the tissues.  相似文献   

5.
Several chemokine receptors have been cloned and shown to belong to a superfamily of seven transmembrane, G protein-coupled receptors. We report here the molecular cloning of TER1, a novel human chemokine receptor-like gene. The amino acid sequence deduced from the TER1 cDNA shows 43, 40, 40, and 39% identity to CCR4, CCR5, CCR1, and CCR2B beta chemokine receptors, respectively. By the use of fluorescent in situ hybridization, we have mapped the TER1 gene to chromosome 3p21, clustered with other chemokine receptor genes. By Northern blot analysis, TER1 mRNA is found to be expressed in the thymus, spleen, and at barely detectable levels in peripheral blood lymphocytes. Moreover, TER1 message in abundant in the NK cell line NK3.3 and in the T cell line MOLT-4. The restricted TER1 expression in cells and tissues of the lymphoid lineage suggests that this receptor may play a role in regulating immune functions.  相似文献   

6.
Although most leukocytes, T lymphocytes in particular, respond to several different chemokines, there is virtually no information on chemokine activities and chemokine receptors in B lymphocytes. A putative chemokine receptor, BLR1, that is expressed in Burkitt's lymphoma cells and B lymphocytes was cloned a few years ago. Deletion of the gene for BLR1 yielded mice with abnormal primary follicles and germinal centers of the spleen and Peyer's patches, reflecting the inability of B lymphocytes to migrate into B cell areas. By screening expressed sequence tag DNA sequences, we have identified a CXC chemokine, termed B cell-attracting chemokine 1 (BCA-1), that is chemotactic for human B lymphocytes. BCA-1 cDNA encodes a protein of 109 amino acids with a leader sequence of 22 residues. The mature protein shares 23-34% identical amino acids with known CXC chemokines and is constitutively expressed in secondary lymphoid organs. BCA-1 was chemically synthesized and tested for activity on murine pre-B cells 300-19 transfected with BLR1 and on human blood B lymphocytes. In transfected cells, BCA-1 induced chemotaxis and Ca2+ mobilization demonstrating that it acts via BLR1. Under the same conditions, no activity was obtained with 10 CXC and 19 CC chemokines, lymphotactin, neurotactin/fractalkine and several other peptide ligands. BCA-1 was also a highly effective attractant for human blood B lymphocytes (which express BLR1), but was inactive on freshly isolated or IL-2-stimulated T lymphocytes, monocytes, and neutrophils. In agreement with the nomenclature rules for chemokine receptors, we propose the term CXCR5 for BLR1. Together with the observed disturbance of B cell colonization in BLR1/ CXCR5-deficient mice, the present results indicate that chemotactic recruitment by locally produced BCA-1 is important for the development of B cell areas of secondary lymphoid tissues.  相似文献   

7.
8.
Polarized Th1 and Th2 cells differentially express adhesion molecules and chemokine receptors, endowing these cells with distinct tissue homing capabilities. Here we report that, in contrast to other chemokine receptors, the expression of CCR4 and CCR8 on Th2 cells is transiently increased following TCR and CD28 engagement. IL-4 is not required for this activation-induced up-regulation of CCR4 and CCR8. In accordance with receptor expression, the response of Th2 cells to I-309 (CCR8 ligand) and thymus- and activation-regulated chemokine (CCR4 and CCR8 ligand) is enhanced upon activation. Moreover, activated Th1 cells up-regulate CCR4 expression and functional responsiveness to thymus- and activation-regulated chemokine. Analysis of polarized subsets of CD8+ T cells reveals a similar pattern of chemokine receptor expression and modulation of responsiveness. Taken together, these findings suggest that an up-regulation of CCR4 and CCR8 following Ag encounter may contribute to the proper positioning of activated T cells within sites of antigenic challenge and/or specialized areas of lymphoid tissues.  相似文献   

9.
CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78gamma, AT744.2, LD78beta)-(NCC-3, NCC-2, AT744.1, LD78alpha)-NCC-4-retinoic acid receptor alpha- telomere.  相似文献   

10.
Secondary Lymphoid-tissue Chemokine (SLC) is a recently identified CC chemokine that is constitutively expressed in various lymphoid tissues and is a potent and specific chemoattractant for lymphocytes. The SLC gene and the gene encoding another lymphocyte-specific CC chemokine, EBI1-ligand chemokine (ELC), form a mini-cluster at human chromosome 9p13. Here, we show that SLC is a high affinity functional ligand for chemokine receptor 7 (CCR7) that is expressed on T and B lymphocytes and a known receptor for ELC. SLC induced a vigorous calcium mobilization in murine L1.2 cells stably expressing human CCR7. SLC tagged with the secreted form of alkaline phosphatase (SLC-SEAP) showed specific binding to CCR7 that was fully competed by SLC with an IC50 of 0.5 nM. SLC also induced a vigorous chemotactic response in CCR7-expressing L1.2 cells with a typical bell-shaped dose-response curve and a maximal migration at 10 nM. When assessed using CCR7-transfected L1.2 cells, SLC and ELC were essentially equivalent in terms of cross desensitization in calcium mobilization via CCR7, cross-competition in binding to CCR7, and induction of chemotaxis via CCR7. SLC and ELC were also shown to fully share receptors expressed on cultured normal T cells known to express CCR7. Notably, however, SLC was somehow less efficient in cross-desensitization against ELC in calcium mobilization and in cross-competition with ELC for binding when assessed using cultured normal T cells. Thus, SLC and ELC, even though sharing only 32% amino acid identity, constitute a genetically and functionally highly related subgroup of CC chemokines.  相似文献   

11.
We tested chemokine receptor subset usage by diverse, well-characterized primary viruses isolated from peripheral blood by monitoring viral replication with CCR1, CCR2b, CCR3, CCR5, and CXCR4 U87MG.CD4 transformed cell lines and STRL33/BONZO/TYMSTR and GPR15/BOB HOS.CD4 transformed cell lines. Primary viruses were isolated from 79 men with confirmed human immunodeficiency virus type 1 (HIV-1) infection from the Chicago component of the Multicenter AIDS Cohort Study at interval time points. Thirty-five additional well-characterized primary viruses representing HIV-1 group M subtypes A, B, C, D, and E and group O and three primary simian immunodeficiency virus (SIV) isolates were also used for these studies. The restricted use of the CCR5 chemokine receptor for viral entry was associated with infection by a virus having a non-syncytium-inducing phenotype and correlated with a reduced rate of disease progression and a prolonged disease-free interval. Conversely, broadening chemokine receptor usage from CCR5 to both CCR5 and CXCR4 was associated with infection by a virus having a syncytium-inducing phenotype and correlated with a faster rate of CD4 T-cell decline and progression of disease. We also observed a greater tendency for infection with a virus having a syncytium-inducing phenotype in men heterozygous for the defective CCR5 Delta32 allele (25%) than in those men homozygous for the wild-type CCR5 allele (6%) (P = 0.03). The propensity for infection with a virus having a syncytium-inducing phenotype provides a partial explanation for the rapid disease progression among some men heterozygous for the defective CCR5 Delta32 allele. Furthermore, we did not identify any primary viruses that used CCR3 as an entry cofactor, despite this CC chemokine receptor being expressed on the cell surface at a level commensurate with or higher than that observed for primary peripheral blood mononuclear cells. Whereas isolates of primary viruses of SIV also used STRL33/BONZO/TYMSTR and GPR15/BOB, no primary isolates of HIV-1 used these particular chemokine receptor-like orphan molecules as entry cofactors, suggesting a limited contribution of these other chemokine receptors to viral evolution. Thus, despite the number of chemokine receptors implicated in viral entry, CCR5 and CXCR4 are likely to be the physiologically relevant chemokine receptors used as entry cofactors in vivo by diverse strains of primary viruses isolated from blood.  相似文献   

12.
The chemokine receptor CXCR4 is the major coreceptor used for cellular entry by T cell- tropic human immunodeficiency virus (HIV)-1 strains, whereas CCR5 is used by macrophage (M)-tropic strains. Here we show that a small-molecule inhibitor, ALX40-4C, inhibits HIV-1 envelope (Env)-mediated membrane fusion and viral entry directly at the level of coreceptor use. ALX40-4C inhibited HIV-1 use of the coreceptor CXCR4 by T- and dual-tropic HIV-1 strains, whereas use of CCR5 by M- and dual-tropic strains was not inhibited. Dual-tropic viruses capable of using both CXCR4 and CCR5 were inhibited by ALX40-4C only when cells expressed CXCR4 alone. ALX40-4C blocked stromal-derived factor (SDF)-1alpha-mediated activation of CXCR4 and binding of the monoclonal antibody 12G5 to cells expressing CXCR4. Overlap of the ALX40-4C binding site with that of 12G5 and SDF implicates direct blocking of Env interactions, rather than downregulation of receptor, as the mechanism of inhibition. Thus, ALX40-4C represents a small-molecule inhibitor of HIV-1 infection that acts directly against a chemokine receptor at the level of Env-mediated membrane fusion.  相似文献   

13.
Liver and activation-regulated chemokine (LARC) is a recently identified CC chemokine that is expressed mainly in the liver. LARC functions as a selective chemoattractant for lymphocytes that express a class of receptors specifically binding to LARC with high affinity. To identifiy the receptor for LARC, we examined LARC-induced calcium mobilization in cells stably expressing five CC chemokine receptors (CCR1-CCR5) and five orphan seven-transmembrane receptors. LARC specifically induced calcium flux in K562 cells as well as 293/EBNA-1 cells stably expressing an orphan receptor GPR-CY4. LARC induced migration in 293/EBNA-1 cells stably expressing GPR-CY4 with a bi-modal dose-response curve. LARC fused with secreted alkaline phosphatase (LARC-SEAP) bound specifically to Raji cells stably expressing GPR-CY4 with a Kd of 0.9 nM. Only LARC but not five other CC chemokines (MCP-1, RANTES, MIP-1alpha, MIP-1beta, and TARC) competed with LARC-SEAP for binding to GPR-CY4. By Northern blot analysis, GPR-CY4 mRNA was expressed mainly in spleen, lymph nodes, Appendix, and fetal liver among various human tissues. Among various leukocyte subsets, GPR-CY4 mRNA was detected in lymphocytes (CD4(+) and CD8(+) T cells and B cells) but not in natural killer cells, monocytes, or granulocytes. Expression of GPR-CY4 mRNA in CD4(+) and CD8(+) T cells was strongly up-regulated by IL-2. Taken together, GPR-CY4 is the specific receptor for LARC expressed selectively on lymphocytes, and LARC is a unique functional ligand for GPR-CY4. We propose GPR-CY4 to be designated as CCR6.  相似文献   

14.
CC chemokine receptors 1 and 3 (CCR1 and CCR3) are expressed by eosinophils; however, factors regulating their expression and function have not previously been defined. Here we analyze chemokine receptor expression and function during eosinophil differentiation, using the eosinophilic cell line HL-60 clone 15 as a model system. RNA for CCR1, -3, -4, and -5 was not detectable in the parental cells, and the cells did not specifically bind CC chemokines. Cells treated with butyric acid acquired eosinophil characteristics; expressed mRNA for CCR1 and CCR3, but not for CCR4 or CCR5; acquired specific binding sites for macrophage-inflammatory protein-1alpha and eotaxin (the selective ligands for CCR1 and CCR3, respectively); and exhibited specific calcium flux and chemotaxis responses to macrophage-inflammatory protein-1alpha, eotaxin, and other known CCR1 and CCR3 agonists. CCR3 was expressed later and at lower levels than CCR1 and could be further induced by IL-5, whereas IL-5 had little or no effect on CCR1 expression. Consistent with the HIV-1 coreceptor activity of CCR3, HL-60 clone 15 cells induced with butyric acid and IL-5 fused with HeLa cells expressing CCR3-tropic HIV-1 envelope glycoproteins, and fusion was blocked specifically by eotaxin or an anti-CCR3 mAb. These data suggest that CCR1 and CCR3 are markers of late eosinophil differentiation that are differentially regulated by IL-5 in this model.  相似文献   

15.
16.
17.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

18.
The chemokine receptor CXCR4 serves as a coreceptor for HIV-1 entry into CD4+ cells, in particular for strains emerging late in the infection. Cell surface expression of CXCR4 has, therefore, important implications for HIV-1 pathogenesis. Using blood lymphocytes cultured under various conditions, we studied the expression and regulation of CXCR4. Flow cytometry showed that only about 20% of freshly isolated lymphocytes expressed CXCR4 on the cell surface whereas in 80% of resting blood lymphocytes CXCR4 was located intracellularly. Within a few hours in culture, the intracellular CXCR4 was translocated to the surface and was expressed in the large majority of both naive and memory lymphocytes. A decrease in surface expression of CXCR4 was found when lymphocytes cultured overnight for maximal receptor expression were stimulated with phytohemagglutinin, anti-CD3 antibodies, phorbol 12-myristate 13-acetate and stromal cell-derived factor-1. The superantigen staphylococcal enterotoxin A, a more selective stimulus, induced a marked decrease in CXCR4 expression preferentially in cells positive for the CD25 activation marker. Confocal laser scanning microscopy demonstrated the presence of CXCR4 in the cytosol and on the surface of resting lymphocytes and also showed CXCR4 redistribution after activation. The number of cells infected by the X4 HIV strain NL4.3 paralleled the expression of CXCR4 in CD4+ T lymphocytes. Sustained reduction of CXCR4 cell surface expression upon activation with phytohemagglutinin correlated with a low number of CD4+ T lymphocytes expressing HIV p24 gag antigen. Our results indicate that activation of CD4+ T lymphocytes reduces surface expression of CXCR4 in part by receptor internalization and that cell activation-dependent CXCR4 down-regulation limits spread of infection by X4 viruses.  相似文献   

19.
Human neutrophils (polymorphonuclear leukocytes; PMN) respond to some CXC chemokines but do not migrate to CC chemokines. Recent work has shown that chemokine receptors can be modulated by inflammatory cytokines. In this study, the effect of IFN-gamma, a prototypic Th1 cytokine, on chemokine receptor expression in PMN was investigated. IFN-gamma caused a rapid (approximately 1 h) and concentration-dependent increase of CCR1 and CCR3 mRNA. The expression of CCR2, CCR5, and CXCR1-4 was not augmented. IFN-gamma-treated PMN, but not control cells, expressed specific binding sites for labeled monocyte-chemotactic protein (MCP)-3 and migrated to macrophage-inflammatory protein (MIP)-1alpha, RANTES, MCP-3, MIP-5/HCC2, and eotaxin. 7B11, a mAb for CCR3, inhibited the chemotactic response of IFN-gamma-treated PMN to eotaxin, and aminoxypentane-RANTES blocked PMN migration to RANTES. These results suggest that the selectivity of certain chemokines for their target cells may be altered by cytokines produced within an inflammatory context. Since PMN may play a role in orienting immunity toward Th1 responses, it is possible to speculate that IFN-gamma not only promotes Th1 differentiation directly, but also reorients the functional significance of Th2 effector cytokines by broadening the spectrum of their action to include PMN.  相似文献   

20.
The differential use of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) may be intimately involved in the transmission and progression of human immunodeficiency virus infection. Changes in coreceptor utilization have also been noted upon adaptation of primary isolates (PI) to growth in established T-cell lines. All of the T-cell line-adapted (TCLA) viruses studied to date utilize CXCR4 but not CCR5. This observation had been suggested as an explanation for the sensitivity of TCLA, but not PI, viruses to neutralization by recombinant gp120 antisera and V3-directed monoclonal antibodies, but recent studies have shown coreceptor utilization to be independent of neutralization sensitivity. Here we describe a newly isolated TCLA virus that is sensitive to neutralization but continues to utilize both CXCR4 and CCR5 for infection. This finding further divorces coreceptor specificity from neutralization sensitivity and from certain changes in cell tropism. That the TCLA virus can continue to utilize CCR5 despite the changes that occur upon adaptation and in the apparent absence of CCR5 expression in the FDA/H9 T-cell line suggests that the interaction between envelope protein and coreceptor may be mediated by multiple weak interactions along a diffuse surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号