首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of putative extracellular sequences for ligand binding in the TRH receptor was examined using deletion or substitution mutations. Each mutant receptor was transiently expressed in TRH receptor-minus GH(1)2C(1)b rat pituitary cells, and binding of 4 Nu Mu [3H]pGlu-N(tau)-MeHis-Pro-NH2 ([3H] MeTRH) was measured. When binding was not detected, signal transduction at 10 microM MeTRH was measured to assess receptor expression. Deletion of most of the N-terminal sequences (Glu(2)-Leu(22)), including two potential glycosylation sites, had no effect on the affinity of the receptor for MeTRH. Segmental deletions or simultaneous substitution of multiple amino acid residues in the first, second, or third extracellular loop (EL1, EL2, or EL3) resulted, however, in total loss of [3H]MeTRH binding, suggesting important roles for the loop sequences in either receptor expression or ligand binding. Individual substitutions were made to test further the role of the specific extracellular loop sequences in TRH binding. In EL1, conversion of Tyr93 to Ala resulted in more than 20-fold decrease in affinity for MeTRH. In EL2 and the top portion of the fifth transmembrane helix, conversion of Tyr181 to Phe, Tyr188 to Ala, and Phe199 to Ala resulted in a large ( > 100-fold) decrease in affinity for MeTRH, and conversion of Tyr 188 to Phe and Phe196 to Ala caused an agonist-specific 4- to 5-fold decrease in affinity. In EL3, conversion of Asn289 to Ala and of Ser290 to Ala caused a large ( > 100-fold) decrease in affinity for MeTRH. These results suggest important roles for the extracellular loops in high affinity TRH binding and lead us to propose a model in which TRH binds to the extra-cellular domain of its receptor.  相似文献   

2.
The role of the external third of helix VI of the angiotensin II (AII) AT1 receptor for the interaction with its ligand and for the subsequent signal transduction was investigated by individually replacing residues 252-256 by Ala, and residues 259 or 261 by Tyr, and permanently transfecting the resulting mutants to Chinese hamster ovary (CHO) cells. Binding experiments showed no great changes in affinity of any of the mutants for AII, [Sar1]-AII, or [Sar1, Leu8]-AII, but the affinity for the nonpeptide antagonist DuP753 was significantly decreased. The inositol phosphate response to AII was remarkably decreased in mutants V254A, H256A, and F259Y. These results indicate that AT1 residues Val254, His256, and Phe259 are not involved in ligand binding but participate in signal transduction. Based in these results and in others from the literature, it is suggested that, in addition to the His256 imidazole ring, the Phe259 aromatic ring interacts with the AII's Phe8, thus contributing to the signal-triggering mechanism.  相似文献   

3.
Recombinant wild-type human IGF-1 and a C-region mutant in which residues 28-37 have been replaced by a 4-glycine bridge (4-Gly IGF-1) were secreted and purified from yeast. An IGF-1 analogue in which residues 29-41 of the C-region have been deleted (mini IGF-1) was created by site-directed mutagenesis and also expressed. All three proteins adopted the insulin-fold as determined by circular dichroism. The significantly raised expression levels of mini IGF-1 allowed the recording of two-dimensional NMR spectra. The affinity of 4-Gly IGF-1 for the IGF-1 receptor was approximately 100-fold lower than that of wild-type IGF-1 and the affinity for the insulin receptor was approximately 10-fold lower. Mini IGF-1 showed no affinity for either receptor. Not only does the C-region of IGF-1 contribute directly to the free energy of binding to the IGF-1 receptor, but also the absence of flexibility in this region eliminates binding altogether. As postulated for the binding of insulin to its own receptor, it is proposed that binding of IGF-1 to the IGF-1 receptor also involves a conformational change in which the C-terminal B-region residues detach from the body of the molecule to expose the underlying A-region residues.  相似文献   

4.
In order to characterize regions of the insulin receptor that are essential for ligand binding and possibly identify a smaller insulin-binding fragment of the receptor, we have used site-directed mutagenesis to construct a series of insulin receptor deletion mutants. From 112 to 246 amino acids were deleted from the alpha-subunit region comprising amino acids 469-729. The receptor constructs were expressed as soluble insulin receptor IgG fusion proteins in baby hamster kidney cells and were characterized in binding assays by immunoblotting and chemical cross-linking with radiolabeled insulin. The shortest receptor fragment identified was a free monomeric alpha-subunit deleted of amino acids 469-703 and 718-729 (exon 11); the mass of this receptor fragment was found by mass spectrometry to be 70 kDa. This small insulin receptor fragment bound insulin with an affinity (Kd) of 4.4 nM, which is similar to what was found for the full-length ectodomain of the insulin receptor (5.0 nM). Cross-linking experiments confirmed that the 70-kDa receptor fragment specifically bound insulin. In summary we have minimized the insulin binding domain of the insulin receptor by identifying a 70-kDa fragment of the ectodomain that retains insulin binding affinity making this an interesting candidate for detailed structural analysis.  相似文献   

5.
Pharmacological analyses of gamma-aminobutyric acidA (GABAA) receptor subtypes have suggested that both the alpha and gamma subunits, but not the beta subunit, contribute to the benzodiazepine binding site. We took advantage of the different pharmacological properties conferred by the inclusion of different gamma subunits in the receptor macromolecule to identify amino acids gamma2Phe77 and gamma2Met130 as key determinants of the benzodiazepine binding site. gamma2Phe77 was required for high affinity binding of the benzodiazepine site ligands flumazenil, CL218,872, and methyl-beta-carboline-3-carboxylate but not flunitrazepam. This amino acid was, however, required for allosteric modulation by flunitrazepam, as well as other benzodiazepine site ligands. In contrast, gamma2Met130 was required for high affinity binding of flunitrazepam, clonazepam, and triazolam but not flumazenil, CL218, 872, or methyl-beta-carboline-3-carboxylate and did not affect benzodiazepine efficacy. Introduction of the phenylalanine and methionine into the appropriate positions of gamma1 was not sufficient to confer high affinity for the benzodiazepine site ligand zolpidem. These data show that gamma2Phe77 and gamma2Met130 are necessary for high affinity binding of a number of benzodiazepine site ligands. Although most previous studies have focused on the contribution of the alpha subunit, we demonstrated a critical role for the gamma subunit at the benzodiazepine binding site, indicating that this modulatory site is located at the interface of these two subunits. Furthermore, gamma2Phe77 is homologous to alpha1Phe64, which has been previously shown to be a key determinant of the GABA binding site, suggesting a conservation of motifs between different ligand binding sites on the GABAA receptor.  相似文献   

6.
The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists: one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

7.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor gene family, mediates the cellular uptake of a diversity of ligands. A folding chaperone, the 39-kDa receptor-associated protein (RAP) that resides in the early compartments of the secretory pathway inhibits the binding of all ligands to the receptor and may serve to prevent premature binding of ligands to the receptor during the trafficking to the cell surface. To elucidate the molecular interactions that underlie the interplay between the receptor, RAP, and the ligands, we have analyzed and delineated the binding sites of plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (t-PA).PAI-1 complexes, RAP, and the anti-LRP Fab fragment Fab A8. To that end, we have generated a series of soluble recombinant fragments spanning the second cluster of complement-type repeats (C3-C10) and the amino-terminal flanking epidermal growth factor repeat (E4) of LRP (E4-C10; amino acids 787-1165). All fragments were expressed by stably transfected baby hamster kidney cells and purified by affinity chromatography. A detailed study of ligand binding to the fragments using surface plasmon resonance revealed the presence of three distinct, Ca2+-dependent ligand binding sites in the cluster II domain (Cl-II) of LRP. t-PA.PAI-1 complexes as well as PAI-1 bind to a domain located in the amino-terminal portion of Cl-II, spanning repeats E4-C3-C7. Adjacent to this site and partially overlapping is a high affinity RAP-binding site located on repeats C5-C7. Fab A8, a pseudo-ligand of the receptor, binds to a third Ca2+-dependent binding site on repeats C8-C10 at the carboxyl-terminal end of Cl-II. Next, we studied the RAP-mediated inhibition of ligand binding to LRP and to Cl-II. As expected, we observed a strong inhibition of t-PA.PAI-1 complex and Fab A8 binding to LRP by RAP (IC50 congruent with 0.3 nM), whereas in the reverse experiment, competition of t-PA. PAI-1 complexes and Fab A8 for RAP binding to LRP could only be shown at high concentrations of competitors (>/=1 microM). Interestingly, even though the equilibrium dissociation constants for the binding of RAP to LRP and to Cl-II are similar, the binding of the ligands to Cl-II is only prevented by RAP at concentrations that are at least 2 orders of magnitude higher than those required for inhibition of ligand binding to LRP. Our results favor models that propose RAP-induced allosteric inhibition of ligand binding to LRP that may require LRP moieties that are located outside Cl-II of the receptor.  相似文献   

8.
We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.  相似文献   

9.
Based on single residue substitutions, previous studies suggested that Gln165, His197, and His265 of the neurokinin-1 receptor interact directly with many nonpeptide antagonists, including CP-96,345. To further test this model, all three residues have been substituted simultaneously with alanine. The Q165A-H197A-H265A triple mutant bound CP-96,345 and eight analogs with similar affinity (2-20 microM), even though the same series of compounds bound to the wild-type receptor with affinities over a range of 1000-fold. These observations correspond exactly to the prediction of the binding site model. The micromolar binding affinity of all tested CP-96,345 analogs for the triple mutant seems to reflect solely van der Waals interactions, which suggests a significant contribution of conformational compatibility (or shape complementarity) to binding affinity. The primary role of conformational compatibility in ligand binding was consistent with the observation that simply transferring the residues involved in polar interactions with beta2-agonists into the neurokinin-1 receptor did not lead to increased binding affinity for the beta2-agonists. Taken together, these results support a general principle of ligand-receptor binding in which specific polar interactions can take place only if the overall ligand conformation is compatible with the stereochemistry of the binding pocket. In addition, double-residue and triple-residue substitutions, in combination with single-residue substitutions, can provide an alternative route to reveal multiple interactions that may not be detectable by single-residue substitutions and represent a novel approach to examine ligand-receptor interactions in the absence of high-resolution structural data.  相似文献   

10.
A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]i odo phenyl]2-ethoxy propanoic acid], which is specific for the gamma isoform of the peroxisomal proliferator activated receptor (PPARgamma), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPARgamma1 and to a GST (glutathione S-transferase) fusion protein containing the ligand binding domain of human PPARgamma1 (KD = 70 nM). Using this ligand, we characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition experiments, rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, respectively). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPARgamma1 were comparable with those determined in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an alpha-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPARgamma1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPARgamma and that the pharmacology of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.  相似文献   

11.
The homopentameric B subunit of verotoxin 1 (VT1) binds to the glycosphingolipid receptor globotriaosylceramide (Gb3). We produced mutants with alanine substitutions for residues found near the cleft between adjacent subunits. Substitution of alanine for phenylalanine 30 (Phe-30) resulted in a fourfold reduction in B subunit binding affinity for Gb3 and a 10-fold reduction in receptor density in a solid-phase binding assay. The interaction of wild-type and mutant B subunits with Pk trisaccharide in solution was examined by titration microcalorimetry. The carbohydrate binding of the mutant was markedly impaired compared with that of the wild type and was too weak to allow calculation of a binding constant. These results demonstrate that the mutation significantly impaired the carbohydrate-binding function of the B subunit. To ensure that the mutation had not caused a significant change in structure, the mutant B subunit was crystallized and its structure was determined by X-ray diffraction. Difference Fourier analysis showed that its structure was identical to that of the wild type, except for the substitution of alanine for Phe-30. The mutation was also produced in the VT1 operon, and mutant holotoxin was purified to homogeneity. The cytotoxicity of the mutant holotoxin was reduced by a factor of 10(5) compared to that of the wild type in the Vero cell cytotoxicity assay. The results suggest that the aromatic ring of Phe-30 plays a major role in binding of the B subunit to the Galalpha1-4Galbeta1-4Glc trisaccharide portion of Gb3. Examination of the VT1 B crystal structure suggests two potential carbohydrate-binding sites which lie on either side of Phe-30.  相似文献   

12.
The two bombesin receptor subtypes, neuromedin B (NMB-R) and gastrin releasing peptide (GRP-R) receptors, bind their respective ligands with high affinity. To identify molecular components mediating high affinity NMB binding, four mutant receptors were constructed, in which different parts of the NMB-R were replaced with the corresponding regions of the GRP-R. When stably expressed in Balb 3T3 fibroblasts, all four NMB-R/GRP-R chimeras were functional and showed NMB-induced stimulation of inositol phosphate (IP) formation. Results of 125I-[D-Tyr0]NMB displacement assays using unlabeled NMB for competition indicated that high affinity NMB binding was determined by amino acid sequences in transmembrane domain V (TM-V) of the NMB-R. To identify which amino acid(s) in TM-V of NMB-R contributed to high affinity NMB binding, four additional NMB-R mutants were constructed where non-conserved amino acids in TM-V of NMB-R were replaced by the corresponding GRP-R amino acids. Three of the mutations, TyrPheLeu220-222-->PheTyrVal, Ile230-->Val, and His234-->Phe, did not affect high affinity NMB binding. The Ile216-->Ser substitution, however, abolished high affinity NMB binding and severely impaired the ability of the mutant receptor to stimulate NMB-dependent inositol phosphate formation. These results suggest that ILe216 in TM-V of NMB-R may be critical for high affinity NMB binding.  相似文献   

13.
To provide new insights into ligand/A1 adenosine receptor (A1 AR) interactions, site-directed mutagenesis was used to test the role of several residues in the first four transmembrane (TM) domains of the human A1 AR. Based on multiple sequence analysis of all known ARs, both acidic (glutamic acid and aspartic acid) and polar hydroxy (serine and threonine) amino acids were identified that could potentially play a role in binding adenosine. Glu16 (TM1), Asp55 (TM2), Ser93 and Ser94 (TM3), Ser135 (TM4), and Thr 141 (TM4) were identified in all ARs, and Ser6 and Ser23 (TM1) were identified in all A1 ARs. To test the role of these residues, each was individually mutated to alanine. When Ala6, Ala23, Ala50, Ala93, Ala135, and Ala141 constructs were tested, affinities for [3H]2-chloro-N6-cyclopentyladenosine (CCPA) and [3H]1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were similar to those seen for the wild-type receptor. After conversion of Glu16 to Ala16, the affinity for [3H]CCPA and other agonists fell 10-100-fold, whereas the affinity for [3H]DPCPX and other antagonists was not affected. After conversion of Asp55 to Ala55, the affinity for [3H]CCPA and other agonists increased < or = 100-fold, whereas the affinity for [3H]DPCPX and other antagonists was not affected. Studies of the Ala55 construct also revealed that Asp55 is responsible for allosteric regulation of binding by sodium because the affinity for [3H]CCPA did not change over broad ranges of sodium concentrations. When Ser94 was converted to Ala94, A1 AR immunoreactivity was present on stable cell lines; however, functional binding sites could not be detected. When Ser94 was converted to Thr94, the affinity for some xanthine antagonists fell. These data show that Glu16 in TM1 and Asp55 in TM2 play important roles in agonist/A1 AR interactions and show that Asp55 is responsible for allosteric regulation of ligand/A1 AR binding by sodium. We also identify Ser94 as an important site for ligand binding.  相似文献   

14.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

15.
The cholecystokinin (CCK) receptor types A and B (CCKAR and CCKBR) are G protein-coupled receptors with approximately 50% amino acid identity; both have high affinity for the sulfated CCK octapeptide (CCK-8), whereas only the CCKBR has high affinity for gastrin. Previously, we identified five amino acids in the second extracellular loop (ECL) of the CCKBR that were essential for gastrin selectivity. Subsequent mutagenesis of one of these five amino acids (H207F) resulted in the loss of radiolabeled CCK-8 binding. CCK-8 stimulated total inositol phosphate accumulation in COS-1 cells transiently expressing the CCKBR-H207F with full efficacy and a 3044-fold reduced potency, which suggests that the loss of radioligand binding was caused by a loss in affinity. Alanine scanning mutagenesis was performed on the amino terminus near the top of transmembrane domain I (TMI) and on ECL1, two extracellular domains implicated in ligand binding by previous mutagenesis studies. 125I-Bolton-Hunter-CCK-8 binding to mutant receptors transiently expressed in COS-1 identified one nonconserved amino acid, R57A, at the top of TMI that caused a 21-fold reduction in CCK-8 affinity and four conserved amino acids, N115A, L116A, F120A and F122A, in the ECL1 that caused a 15.6-, 6-, 440-, and 8-fold reduction in affinity or efficacy. Alanine substitution of the equivalent amino acids in the CCKAR corresponding to each of the five amino acids in ECL1 and ECL2 affecting CCK-8 affinity for the CCKBR revealed only two mutations, L103A and F107A, that decreased CCK-8 affinity (68- and 2885-fold, respectively). These data suggest that CCK-8 interacts at multiple contact points in the extracellular domains of CCK receptors and that the CCKAR and CCKBR have distinct binding sites despite their shared high affinity for CCK-8.  相似文献   

16.
Two CRF receptors, CRFR1 and CRFR2, have recently been cloned and characterized. CRFR1 shares 70% sequence identity with CRFR2, yet has much higher affinity for rat/human CRF (r/hCRF) than CRFR2. As a first step toward understanding the interactions between rat/human CRF and its receptor, the regions that are involved in receptor-ligand binding and/or receptor activation were determined by using chimeric receptor constructs of the two human CRFR subtypes, CRFR1 and CRFR2, followed by generating point mutations of the receptor. The EC50 values in stimulation of intracellular cAMP of the chimeric and mutant receptors for the peptide ligand were determined using a cAMP-dependent reporter system. Three regions of the receptor were found to be important for optimal binding of r/hCRF and/or receptor activation. The first region was mapped to the junction of the third extracellular domain and the fifth transmembrane domain; substitution of three amino acids of CRFR1 in this region (Val266, Tyr267, and Thr268) by the corresponding CRFR2 amino acids (Asp266, Leu267, and Val268) increased the EC50 value by approximately 10-fold. The other two regions were localized to the second extracellular domain of the CRFR1 involving amino acids 175-178 and His189 residue. Substitutions in these two regions each increased the EC50 value for r/hCRF by approximately 7- to 8-fold only in the presence of the amino acid 266-268 mutation involving the first region, suggesting that their roles in peptide ligand binding might be secondary.  相似文献   

17.
18.
The ligand binding site of neuropeptide Y (NPY) at the rat Y1 (rY1,) receptor was investigated by construction of mutant receptors and [3H]NPY binding studies. Expression levels of mutant receptors that did not bind [3H]NPY were examined by an immunological method. The single mutations Asp85Asn, Asp85Ala, Asp85Glu and Asp103Ala completely abolished [3H]NPY binding without impairing the membrane expression. The single mutation Asp286Ala completely abolished [3H]NPY binding. Similarly, the double mutation Leu34Arg/Asp199Ala totally abrogated the binding of [3H]NPY, whereas the single mutations Leu34Arg and Asp199Ala decreased the binding of [3H]NPY 2.7- and 5.2-fold, respectively. The mutants Leu34Glu, Pro35His as well as Asp193Ala only slightly affected [3H]NPY binding. A receptor with a deletion of the segment Asn2-Glu20 or with simultaneous mutations of the three putative N-terminal glycosylation sites, displayed no detectable [3H]NPY binding, due to abolished expression of the receptor at the cell surface. Taken together, these results suggest that amino acids in the N-terminal part as well as in the first and second extracellular loops are important for binding of NPY, and that Asp85 in transmembrane helix 2 is pivotal to a proper functioning of the receptor. Moreover, these studies suggest that the putative glycosylation sites in the N-terminal part are crucial for correct expression of the rY1 receptor at the cell surface.  相似文献   

19.
The verotoxins (VT1 and VT2), produced by strains of enterohemorrhagic Escherichia coli, have been implicated in the pathogenesis of hemorrhagic colitis and the hemolytic uremic syndrome. To better understand the role of globotriaosylceramide (Gb3) receptor binding by the verotoxins in disease production, we examined the clinicopathologic effects of an intravenously (i.v.) administered verotoxin 1 mutant holotoxin (Phe30Ala) in rabbits. The substitution of alanine for phenylalanine 30 in the VT1 B subunit has been shown previously to reduce both Gb3 binding affinity and capacity in vitro. This reduction in receptor binding corresponded to a 10(5)-fold reduction in the toxic activity of VT1 on a Vero cell monolayer. In this study, purified 125I-labeled Phe30Ala was administered i.v. to rabbits to determine its specific distribution in rabbit tissues. In contrast to the rapid elimination of i.v. administered 125I-VT1 from the bloodstream, 125I-Phe30Ala had a 52-fold-longer half-life in serum and failed to localize preferentially in the gastrointestinal tract and central nervous system (CNS). Rabbits challenged with Phe30Ala at a dose equivalent to 10 times the 50% lethal dose (LD50) of VT1 showed no visible clinical symptoms typical of VT effect after 7 days. Administration of Phe30Ala at a dose equivalent to 100 times the LD50 of VT1, however, caused both clinical and histopathologic features indistinguishable from VT1 toxemia in rabbits, although the onset of symptoms was delayed. Rabbits were immunized with Phe30Ala and challenged i.v. with either 125I-VT1 or 125I-VT2. The specific uptake of 125I-VT1 in the gastrointestinal tract and CNS was totally inhibited in Phe30Ala immune rabbits. Only a partial decrease in target organ uptake was observed in Phe30Ala immune rabbits challenged with 125I-VT2. From this study, we conclude that Gb3 binding is responsible for target organ localization of VT1 and disease production in the rabbit. The ability of Phe30Ala to induce both strong antibody and protective responses against VT1 suggests that VT mutants with reduced receptor binding properties may be useful in vaccine strategies. A further reduction in the toxicity of Phe30Ala would be required for its use as a natural toxoid to protect against human verotoxigenic E. coli infections.  相似文献   

20.
Although ligand binding in c-type cytochromes is not directly related to their physiological function, it has the potential to provide valuable information on protein stability and dynamics, particularly in the region of the methionine sixth heme ligand and the nearby peptide chain that has been implicated in electron transfer. Thus, we have measured the equilibrium and kinetics of binding of imidazole to eight mutants of Rhodobacter capsulatus cytochrome c2 that differ in overall protein stability. We found that imidazole binding affinity varies 70-fold, but does not correlate with overall protein stability. Instead, each mutant exerts an effect at the local level, with the largest change due to mutant G95E (glycine substituted by glutamate), which shows 30-fold stronger binding as compared with the wild-type protein. The kinetics of imidazole binding are monophasic and reach saturation at high ligand concentrations for all the mutants and wild-type protein, which is attributed to a rate-limiting conformational change leading to breakage of the iron-methionine bond and providing a binding site for imidazole. The mutants show as much as an 18-fold variation in the first-order rate constant for the conformational change, with the largest effect found with mutant G95E. The kinetics also show a lack of correlation with overall protein stability, but are consistent with localized effects on the dynamics of hinge region 88-102 of the protein, which changes conformation to permit ligand binding. These results are consistent with R. capsulatus cytochrome c2 stabilizing the complex through hydrogen bonding to the imidazole. The larger effects of mutant G95E on equilibrium and kinetics are likely to be due to its location within the hinge region adjacent to heme ligand methionine 96, which is displaced by imidazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号