首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this paper, the electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy used as a negative electrode in Ni–MH accumulators, have been investigated by different electrochemical methods such as cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy. The experimental results indicate that the discharge capacity reaches a maximum value of 260 mAh g−1 after 12 cycles and then decreases to about 200 mAh g−1 after 70 cycles. The value of the mean diffusion coefficient DH, determined by cyclic voltammetry, is about 3.44 × 10−9 cm2 s−1, whereas the charge transfer coefficient , determined by the same method, is about 0.5 which allows us to conclude that the electrochemical reaction is reversible. The hydrogen diffusion coefficients in this compound, corresponding to 10 and 100% of the charge state, determined by electrochemical impedance spectroscopy, are, respectively, equal to 4.15 × 10−9 cm2 s−1 ( phase) and 2.15 × 10−9 cm2 s−1 (β phase). These values are higher, for the phase and less, for the β phase, than the mean value determined by cyclic voltammetry. We assume that this is related to the number of interstitial sites susceptible to accept the hydrogen atom, which are more numerous in the phase than in the β phase. The chronoamperometry shows that the average size of the particles involved in the electrochemical reaction is about 12 μm.  相似文献   

2.
Microstructure evolution in CoNiGa shape memory alloys   总被引:2,自引:0,他引:2  
Magnetic shape memory CoNiGa alloys hold great promise as new smart materials due to the good ductility and a wide range of martensitic transformation (MT) temperatures as well as magnetic transition points. This paper reports the results of investigations on the equilibrium phase constitution and microstructure evolution in quenched or aged CoNiGa alloys using the optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) methods. The dendritic γ phase decreases as lowering of Ga content in studied two series of samples (Co50Ni50 − xGax, x = 0–50 and Co100 − 2yNiyGay, y = 15–35). Some γ′ precipitates with different morphologies were found in given alloys conducted with water quenching (WQ) at 800 °C or long-time ageing at 300 °C. After 800 °C quenching, the γ′ phase has a rod-like shape for the Co50Ni30Ga20 alloy but shows a Widmanstätten morphology as Ga increases to 25 at%, and trends to be block structure in further high Ga content alloy. In the case of 300 °C aged alloys, the γ′ particles prefer to nucleate in interior of γ phase or at the interface of β–γ. We also presented an illustrative vertical section phase diagram keeping 50 at% Co, and isothermal section phase diagram at 1150 and 800 °C of the CoNiGa system. Based on the schematic ternary phase diagram, the composition scope which potentially holds over the magnetic pure martensite phase structure at room temperature (RT) was pointed out. It is believed that this optimized range alloys would play an important role in the functional materials design for application.  相似文献   

3.
2024 Aluminium alloy has been studied by isothermal internal friction after quenching and annealing at different temperatures. Experiments were performed in a very large frequency range (10−4–50 Hz) between room temperature and 823 K. At each measuring temperature, the experiment was started after complete stabilization of the microstructure and therefore the transient effects due to θ′ and θ″ precipitation were not observed. Nevertheless, a new relaxation effect was obtained in the reversion temperature range. This effect is not thermally activated, has a maximum at about 0.1 Hz and increases with the measuring temperature. It disappears completely after annealing at 823 K and successive slow cooling; it is therefore related to the θ precipitates.  相似文献   

4.
The deformation characteristics of commercially pure titanium under compression in the temperature range from 303 K to 573 K (30–300 °C) and at strain rates 0.07 s−1, 0.11 s−1, 8.5 s−1 and 32 s−1 have been studied with the view to characterising the flow instabilities occurring in the microstructure and to optimising the cold and warm workability using dynamic material model (DMM) instability maps. Conventional industrial machines such as hydraulic press, friction screw press and eccentric press are used to achieve the above strain rates. In the regime of investigated temperature and strain rate this material exhibits adiabatic shear deformation, dynamic strain ageing and flow localisation. The DMM stability criteria are used to identify the stable regime for ‘safe’ processing of the materials. DMM stability criteria predict a narrow triangular region in the temperature range from 548 K to 573 K (275–300 °C) and strain rate range from 10−2 s−1 to 10−1 s−1 as a stable region for deformation, which is the “optimal” domain for mechanical working of commercially pure titanium. Further, the DMM stability parameters obtained using the data generated from the tests conducted in constant true strain rate machine are also used to optimise the optimal domain to study the influence of machines on arriving at optimal domains using DMM methodology. It has been observed that the predictions of the DMM instability maps generated using the data obtained from conventional machines and constant strain rate servo-hydraulic machine are identical. The validity of this approach has also been demonstrated with forging and rolling trials at industrial scale.  相似文献   

5.
An aluminum 7034 alloy, produced by spray casting and with an initial grain size of ˜2.1 μm, was processed by equal-channel angular pressing (ECAP) at 473 K to produce an ultrafine grain size of ˜0.3 μm. It is shown that the rod-like MgZn2 precipitates present in the as-received alloy are broken into very small spherical particles during ECAP and these particles become distributed reasonably uniformly throughout the material. The presence of these fine MgZn2 particles, combined with a distribution of fine Al3Zr precipitates, is very effective in restricting grain growth so that submicrometer grains are retained at elevated temperatures up to at least ˜670 K. Tensile testing of the pressed material revealed high elongations to failure, including elongations of >1000% when testing at a temperature of 673 K at initial strain rates at and above 10−2 s−1. These results confirm the occurrence of high strain rate superplasticity in the spray-cast alloy.  相似文献   

6.
The effect of quenching rate on the aging precipitation behavior and properties of Al–Zn–Mg–Cu–Zr–Er alloy was investigated. The scanning electron microscopy, transmission electron microscopy, and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy. The quench-induced η phase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate, which contributes to an increment of hardness by 24% (HV 26) compared with that of the water-quenched one. However, the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate. Meanwhile, the water-quenched alloy after peak aging also has the highest strength, elongation, and corrosion resistance, which is due to the high driving force and increased number density of aging precipitates, and the narrowed precipitate free zones.  相似文献   

7.
To clarify the existence of metastable phases in the ZrO2–CeO2–CeO1.5 system, evolved-oxygen gas analyses, (EGA), by heating a single phase of t′ and t″ (Ce(1−x)ZrxO2) with various compositions, x, in a reducing gas and successive oxidation were carried out repeatedly. The oxygen release behaviour of the t′ and t″ phases was very complicated. The single κ phases, (Ce(1−x)ZrxO2) with the composition, x=0.5 and 0.6, which were obtained by oxidizing the resulting pyrochlore as a precursor in O2 gas at 873 K, exhibited a sharp oxygen release at the lowest temperature; the composition range of κ phase may be x=0.450.65. A new tetragonal phase t*, (Ce(1−x)ZrxO2), which was attained by cyclic redox process together with annealing in O2 gas at 1323 or 1423 K, exhibited a sharp oxygen release at the highest temperature; the composition range of t* phase may be as wide as x=0.200.65. A metastable solid solution expressed by a chemical formula of Ce(8−4y)Zr4yO(14−δ) (y=01) possessing a CaF2-related structure appeared on deoxidation of the t* phase. A ternary phase diagram containing the t* and Ce(8−4y)Zr4yO(14−δ) solid solution was proposed.  相似文献   

8.
Atom-probe tomography (APT) and high-resolution transmission electron microscopy are used to study the chemical composition and nanostructural temporal evolution of Al3(Sc1−xZrx) precipitates in an Al–0.09 Sc–0.047 Zr at.% alloy aged at 300 °C. Concentration profiles, via APT, reveal that Sc and Zr partition to Al3(Sc1−xZrx) precipitates and Zr segregates concomitantly to the -Al/Al3(Sc1−xZrx) interface. The Zr concentration in the precipitates increases with increasing aging time, reaching a maximum value of 1.5 at.% at 576 h. The relative Gibbsian interfacial excess of Zr, with respect to Al and Sc, reaches a maximum value of 1.24 ± 0.62 atoms nm−2 after 2412 h. The temporal evolution of Al3(Sc1−xZrx) precipitates is determined by measuring the time dependence of the depletion of the matrix supersaturation of Sc and Zr. The time dependency of the supersaturation of Zr does not follow the asymptotic t−1/3 law while that of Sc does, indicating that a quasi-stationary state is not achieved for both Sc and Zr.  相似文献   

9.
A constitutive law for power-law creep of BCC β-Ti is developed, based on experimental data from eight independent studies. The present compilation adds more than twice as many data points as previous analyses, covers nine orders of magnitude in strain rate from 10−7 to 102 s−1, and incorporates recent data for the shear modulus of β-Ti.  相似文献   

10.
Enthalpies of formation of solid Sm---Al alloys   总被引:2,自引:0,他引:2  
A direct isoperibolic differential calorimeter was used to measure the formation heats of the Sm---Al intermetallic compounds. X-ray powder diffraction, optical and scanning electron microscopy and electron probe microanalysis were used to check the composition of the samples. The following values of ΔfH0 for the different compounds were obtained in the solid state at 300 K: Sm2Al, = −38.0 ± 2 kJ (mol atoms)−1; SmAl, −49.0 ± 2 kJ (mol atoms)−1; SmAl2, −55.0 ± 2 kJ (mol atoms)−1; SmAl3, −48.0 ± 2 kJ (mol atoms)−1. The results are discussed and compared with earlier experimental data.  相似文献   

11.
We examine size scale and strain rate effects on single-crystal face-centered cubic (fcc) metals. To study yield and work hardening, we perform simple shear molecular dynamics simulations using the embedded atom method (EAM) on single-crystal nickel ranging from 100 atoms to 100 million atoms and at strain rates ranging from 107 to 1012 s−1. We compare our atomistic simulation results with experimental data obtained from interfacial force microscopy (IFM), nano-indentation, micro-indentation and small-scale torsion. The data are found to scale with a geometric length scale parameter defined by the ratio of volume to surface area of the samples. The atomistic simulations reveal that dislocations nucleating at free surfaces are critical to causing micro-yield and macro-yield in pristine material. The increase of flow stress at increasing strain rates results from phonon drag, and a simple model is developed to demonstrate this effect. Another important aspect of this study reveals that plasticity as reflected by the global averaged stress–strain behavior is characterized by four different length scales: (1) below 104 atoms, (2) between 104 and 106 atoms (2 μm), (3) between 2 μm and 300 μm, and (4) above 300 μm.  相似文献   

12.
W.J. Kim  Y.K. Sa  J.B. Lee  H.G. Jeong 《Intermetallics》2006,14(12):1391-1396
Superplastic deformation and crystallization behavior of a Cu54Ni6Zr22Ti18 metallic glass were investigated. A maximum elongation of 650% was obtained at 733 K at 1 × 10−2 s−1 from the sheet fabricated by squeeze copper-mold casting method. At low strain rates, the strain-rate-sensitivity exponent value was close to 1, suggesting that Newtonian-like behavior governed the plastic flow. At a high strain rate around 10−2 s−1, a transition from Newtonian to non-Newtonian behavior took place with decrease in m value. Large strain hardening by crystallization occurred during the course of deformation. The strain hardening was found to be caused by crystallization according to the analyses of the relation of true stress vs. testing time, T-T-T diagram and DSC characteristics. The time periods up to the strain before strain hardening at 733 K for the Cu54Ni6Zr22Ti18 metallic glass were similar to that of the Zr65Al10Ni10Cu15 metallic glass at 696 K as 180–300 s (3–5 min). This coincidence could be explained by comparison of their T-T-T diagrams showing that the incubation times for crystallization of the Cu BMG at 733 K and for Zr BMG at 696 K are similar.  相似文献   

13.
The influence of high-energy impact shock-wave loading on the microplasticity and macroscopic performance of the Cu–Al–Ni crystals in the β1′ martensitic phase has been studied. Elastic and anelastic properties of quenched and aged polyvariant single crystals before and after impact shock-wave loading were measured in the temperature range 80–300 K, at a frequency of about 100 kHz in the strain amplitude-independent and amplitude-dependent ranges by means of the composite oscillator technique, and in the MHz frequency range using the pulse–echo technique. High-velocity impact loading of the specimens was realised by plane shock-waves with stress pulses with a duration of 2·10−6 s and stress amplitudes up to 5 GPa. A pronounced influence of impact shock-wave loading on the elastic and anelastic properties of the β1′ martensite has been observed. A strongly marked softening of the material and an enhancement of damping properties are revealed up to the highest stress pulse amplitudes. This behaviour differs fundamentally from the one observed in ‘ordinary’ fcc metals. Changes of the defect structure induced by shock-wave loading, which may be responsible for the observed phenomena, have been discussed.  相似文献   

14.
Superplastic behavior of a 7055 aluminum alloy   总被引:1,自引:0,他引:1  
It is shown that a high strength 7055 aluminum alloy with partially recrystallized initial structure exhibits superplastic behavior in the temperature interval 400–490 °C within a wide strain rate range from 8.3×10−5 to 3.3×10−2 s−1. Maximum total elongation of about 960% and strain rate sensitivity coefficient, m, of 0.6 were obtained at a temperature of 450 °C and a strain rate of 3.3×10−4 s−1.  相似文献   

15.
The standard enthalpies of formation of some congruent-melting compounds in the binary systems Re---X, where Re Ce, Pr or La and X C, Si or Ge have been determined by direct-synthesis calorimetry at 1473 ± 2 K. The following values of ΔHfo are reported: CeC2, −25.4 ± 1.4 kJ (mol atom)−1; CeSi2, −60.5 ± 2.0 kJ (mol atom)−1; CeSi, −71.1 ± 3.3 kJ (mol atom)−1; Ce5Ge3, −73.4 ± 2.3 kJ (mol atom)−1; CeGe1.6, −75.6 ± 1.9 kJ (mol atom)−1; PrC2, −29.4 ± 1.6 kJ (mol atom)−1; PrSi2, −61.5 ± 1.7 kJ (mol atom)−1; PrSi, −78.1 ± 1.9 kJ (mol atom)−1; Pr5Ge3, −70.4 ± 2.3 kJ (mol atom)−1; PrGe1.6, −81.7 ± 1.7 kJ (mol atom)−1; LaSi2, −56.8 ± 2.5 kJ (mol atom)−1. The results are compared with earlier experimental data, with predicted values from Miedema's semiempirical model, and with available data obtained for Sn and Pb compounds by Borzone et al., by Palenzona and by Palenzona and Cirafici.  相似文献   

16.
Hot compression tests of metastable β titanium alloy TB8 were carled out using a Gleeble-1500 thermal simulation testing machine in the temperature range of 750-1 100 ℃, at constant strain rate from 0.01 s^-1 to l S^-1 and with height direction reduction of 60%. Flow stress behavior and microstructure evolution during hot compression of TB8 alloy were investigated. The hyperbolic-sine-type constitutive model of TB8 alloy was obtained to provide basic data for determining reasonable forming process. The results indicate that hot deformation behavior of TB8 alloy is highly sensitive to the temperature and strain rate. An analysis of the flow stress dependence on strain rate and temperature gives a stress exponent of n=3.416 19 and a deformation activation energy of Ω=227.074 4 kJ/mol. According to the deformation microstructure, no dynamic recrystallization happens below r-phase transus temperature and as a result dynamic recovery is the predominant softening mechanism. On the other hand, the main softening mechanism is characterized as dynamic recrystallization at a slow strain rate above r-phase transus temperature.  相似文献   

17.
J. Lapin 《Intermetallics》1997,5(8):615-624
The effect of ageing in the temperature range from 1023 to 1373 K on the micro-structure and mechanical behaviour of a directionally solidified (DS) Ni3Al-based alloy modified with additions of chromium and iron was investigated. The microstructure of the as-grown alloy consisted of well-aligned and equally spaced lamellas composed of β(B2) intermetallic compound NiAl (Cr, Fe), some β′(L10) martensite and spherical -Cr precipitates. The matrix consisted of γ′(L12) intermetallic compound Ni3Al (Cr, Fe), γ-phase (Ni-based solid solution) and lath-shaped -Cr precipitates. Ageing at 1123 and at 1173 K was found to be the most effective in transforming the unstable lamellae to γ′-phase and -Cr precipitates. The change of microstructural characteristics such as volume fraction of lamellae, size, morphology and distribution of γ′-phase, γ-phase and -Cr precipitates significantly influenced the room-temperature yield strength and elongation of DS alloy after ageing. The strain-hardening exponent varied with the ageing temperature between 0.30 and 0.46 and the quasi-steady work-hardening rate between 2710 and 5340 MPa. In the specimens with the lowest amount of disordered regions, the strain-hardening exponent was found to be 0.46 and the quasisteady work hardening rate was determined to be 3340 MPa.  相似文献   

18.
Y. Ma  A.J. Ardell   《Scripta materialia》2005,52(12):1335-1340
Coarsening of γ precipitates in a γ′ (Ni3Al) matrix depends strongly on volume fraction, in dramatic contrast with coarsening of γ′ precipitates. Coalescence of γ precipitates is easy, unlike the resistance to coalescence of γ′ precipitates. We regard this as indirect proof that anti-phase relationships among γ′ precipitates inhibit coalescence.  相似文献   

19.
Mg–Gd is a promising light hardenable alloy with a high creep resistance at elevated temperatures. The supersaturated solid solution of Gd in Mg decomposes in a sequence of the following phases: β″ (D019) → β′ (c-base centered orthorhombic-c-bco) → β (fcc) stable. Formation of the metastable β′ phase causes a strong hardening. Dislocations facilitate nucleation of precipitates. Dislocation density is, therefore, an important parameter which influences the precipitation process. This effect was examined in the present work by comparison the decomposition sequences in Mg–15 wt.%Gd alloy cold rolled to various thickness reductions. It was found that precipitation of the β′ phase starts at lower temperatures in the cold rolled specimens.  相似文献   

20.
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1−xMnO3 (x=0.0–0.18) compositions. Powders annealed in oxygen/air at 1000–1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173–1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm−1 at 298 K to 105 S cm−1 at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0×10−6 S cm−1 at 700 K to 2.0×10−3 S cm−1 at 1273 K. The ionic transference number of these compositions ranges from 3.0×10−5 to 5.0×10−5 at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03–1.10 and 0.80–1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号