共查询到19条相似文献,搜索用时 49 毫秒
1.
2.
针对滚动轴承早期故障信号被背景噪声淹没、故障特征不明显的问题,提出一种基于小波包分解和互补集合经验模态分解(CEEMD)的轴承早期故障信号特征提取方法.利用Matlab软件对采集到的轴承振动信号进行快速谱峭度分析,根据峭度最大化原则确定带通滤波器的中心频率和带宽,设计带通滤波器;对经过带通滤波器滤波后的信号进行小波包分解和CEEMD分解,根据峭度、相关系数筛选出有效本征模态函数(IMF)分量;利用IMF分量重构小波包信号,对重构小波包信号进行包络谱分析,提取轴承早期故障信号特征频率.该方法通过谱峭度分析降低背景噪声干扰,通过小波包分解增强故障冲击信号,并将CEEMD与小波包分解相结合,解决经典EMD分解存在的模态混叠、无效分量问题.仿真结果表明,相较于传统包络解调算法,重构后信号的背景噪声得到抑制,故障特征分量突出,验证了所提方法的可行性和有效性. 相似文献
3.
煤机设备滚动轴承早期故障特征微弱,且易受载荷、工况等因素的影响而被噪声淹没,导致轴承故障诊断困难。现有研究大多采用单一算法处理轴承故障信号,故障特征提取精度和故障诊断准确性有待进一步提高。提出了一种融合局部特征尺度分解(LCD)和奇异值分解(SVD)的煤机设备轴承故障诊断方法:采用LCD方法将煤机设备轴承振动信号分解为若干个内凛尺度分量(ISC),实现信号初步降噪;计算各ISC的香农熵,选择香农熵最小的ISC进行SVD,并构建SVD信号的奇异值差分谱,针对最大突变分量进行信号重构,实现信号增强去噪;对重构信号进行Hilbert包络解调,得到轴承故障特征频率,进而判断轴承故障。采用现场实测数据对基于LCD-SVD的煤机设备轴承故障诊断方法进行验证,结果表明,该方法可准确提取出轴承故障特征频率,从而实现煤机设备轴承早期故障诊断。 相似文献
4.
针对航空发动机预测与健康管理系统对其状态判断和故障诊断的需求,结合LVQ网络具有处理分类问题时能够识别信息内含有的重要聚类特征信息的优点,提出了基于LVQ神经网络的航空发动机故障特征提取方法。分析研究了LVQ神经网络的结构和学习算法,以及某型航空发动机的测量参数、数据预处理和故障样本选取方法。并以其设计点为例进行了系统仿真。通过与BP网络的分类器对比试验,表明了该算法的可行性和有效性。 相似文献
5.
6.
针对稀疏保持投影算法在特征提取过程中无监督和L1范数优化的计算量较大的问题,提出一种基于流形学习和稀疏约束的快速特征提取算法。首先通过逐类PCA构造级联字典,并基于该字典通过最小二乘法快速学习稀疏保持结构;其次构造用于描述不同子流形距离的局部类间散度函数;然后整合所学习到的稀疏表示信息和局部类间散度信息以达到既考虑判别效率又保持稀疏表示结构的目的;所提算法最终转化为一个求解广义特征值问题。在公共人脸数据库(Yale,ORL和Extended Yale B)中 的 测试结果验证了该方法的可行性和有效性。 相似文献
7.
带式输送机工作环境恶劣,导致采集获得的滚动轴承信号受噪声影响较大,很难提取故障信号的特征频率。针对上述问题,提出了一种带式输送机传动滚筒轴承故障智能诊断方法。通过对滚动轴承振动信号的谱峭度进行分析,识别出瞬态冲击及其在频带中分布位置,同时根据谱峭度最大化原则确定最优中心频率和带宽,由此设计带通滤波器对滚动轴承信号进行滤波;对经过滤波处理后的滚动轴承有效信号进行谱峭度分析,确定故障特征信号,再进行希尔伯特变换获得包络谱,最终获得准确的故障特征。仿真结果表明,通过自适应谱峭度特征提取后,倍频信号更加清晰,特征频率更加明显准确,能有效识别滚动轴承故障。 相似文献
8.
基于ICA和小波变换的轴承故障特征提取 总被引:5,自引:0,他引:5
应用独立分量分析方法和小波变换分离轴承的振动信号,提取其状态特征。并对信号进行自相关预处理,突出信号的非高斯成分,较好地满足独立分量分析的前提条件,即源信号统计独立。采用基于负熵的快速独立分量分析(ICA)算法,成功地分离出了信号的一些独立成分。对ICA处理后的分量信号进行小波变换,完成信号检测,消噪,频带分析,以获取故障信号特征,确定故障的位置和强度。研究结果表明,独立分量分析方法和小波变换能提取明显的轴承故障信号特征。 相似文献
9.
航空装备在巡航、物资运输、军事作战等领域具有重要作用,因此一旦发生故障,造成的损失也是巨大的.在航空装备故障中,机电故障是最难以诊断和修复的.以往在故障检修的故障信号处理环节中,多采用小波变换、盲源分离以及奇异值分解等三种方法,信号去噪能力不足,影响了整体方法的检修效果.针对上述情况,提出一种基于稀疏分解的航空装备机电... 相似文献
10.
提出基于稀疏表示和近邻嵌入的单帧图像超分辨率重构算法;为低分辨率和高分辨率图像块训练两个基于稀疏表示的过完备字典,在训练的低分辨率图像块和高分辨率图像块中分别选取与这两个字典原子最近的图像块近邻,通过图像块近邻来计算构图像块的权重;一旦得到权重矩阵,高分辨率重构图像块可以由低分辨率图像块与相应权重相乘来表示;与之前的算法相比,所提出的算法在计算字典原子与图像块距离的时候不是逐个图像块进行计算,而是先将图像块聚类,计算字典原子与类中心的距离,在距离最近的一类中选取图像块;计算权重矩阵的时间可以大大减少,提高计算效率;所得到的PSNR与其它算法相比,也有一定提高。 相似文献
11.
风电机组轴承早期故障特征提取研究 总被引:1,自引:0,他引:1
针对风电机组滚动轴承早期故障振动信号微弱、强干扰、非平稳、非线性的特点,提出基于自适应噪声完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)-排列熵(Permutation Entropy,PE)-遗传算法(Genetic Algorithm, GA)的特征提取方法。方法先计算振动信号经CEEMDAN分解得到多个本征模态函数(Intrinsic Mode Function,IMF)的排列熵值和方差贡献率,剔除虚假、低贡献率分量;根据识别误差最小和特征子集数目最少两个目标,构造了适应度函数,通过GA进行特征选择选出最优特征子集。仿真分析,上述方法能够快速有效提取不同故障的振动信号特征指标,为故障模式识别问題提供良好的思路和方法。 相似文献
12.
13.
14.
Jianhong Wang Liyan Qiao Yongqiang Ye YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》2017,4(2):353-360
The bearing weak fault feature extraction is crucial to mechanical fault diagnosis and machine condition monitoring. Envelope analysis based on Hilbert transform has been widely used in bearing fault feature extraction. A generalization of the Hilbert transform, the fractional Hilbert transform is defined in the frequency domain, it is based upon the modification of spatial filter with a fractional parameter, and it can be used to construct a new kind of fractional analytic signal. By performing spectrum analysis on the fractional envelope signal, the fractional envelope spectrum can be obtained. When weak faults occur in a bearing, some of the characteristic frequencies will clearly appear in the fractional envelope spectrum. These characteristic frequencies can be used for bearing weak fault feature extraction. The effectiveness of the proposed method is verified through simulation signal and experiment data. 相似文献
15.
基于小波包分析的滚动轴承故障特征提取 总被引:1,自引:0,他引:1
简述了小波包分析的基本原理及其用于特征提取的机理,利用小波包对滚动轴承振动加速度信号进行分解,求出各频率段的能量,并以此作为滚动轴承所发生故障的特征向量进行提取,从而识别出滚动轴承的故障,通过对于实测信号的分析证明了该方法的有效性,体现了小波包分析的优良性。 相似文献
16.
17.
18.
针对心电(ECG)信号智能分析模型中,复杂波形的特征提取困难,人工设计特征造成源信号特征丢失,标签样本不足等问题,提出了一种基于深度稀疏自编码器(Deep Sparse Auto-Encoders,DSAEs)的ECG特征提取方法。该方法在DSAEs进行贪婪逐层训练时,采用适应性矩阵估计(Adaptive moment estimation,Adam)对网络权重进行寻优,以此获得最优参数组合,同时提取出高层隐含层的输出,并作为ECG高度抽象的低维特征。最后利用支持向量机(Support Vector Machines,SVM)构建分类模型,完成对ECG的特征分类。使用MIT-BIH心律失常数据库的ECG数据进行仿真实验,结果表明,提出的ECG特征提取方法能有效地分层抽取特征,提高分类识别准确率。 相似文献
19.
姜海燕 《自动化技术与应用》2014,(7):67-70
滚动轴承失效是机车牵引传动系统的主要故障源之一。为了有效诊断滚动轴承故障,提出了基于小波变换及AR模型参数的机车滚动轴承特征提取方法,以提取能准确反映滚动轴承运行状态的特征信息。首先,通过小波变换对滚动轴承运行时产生的非平稳振动信号进行分解重构,得到不同尺度下的重构信号;然后对重构信号建立AR模型,提取AR模型的自回归参数作为表征滚动轴承运行状态的特征;最后采用支持向量机分类器对提取的特征进行故障分类与识别。仿真结果表明机车滚动轴承故障得到了有效诊断。 相似文献