首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
Several agents that act through G-protein-coupled receptors and also stimulate phosphoinositide-specific phospholipase C (PI-PLC), including angiotensin II, vasopressin, norepinephrine, and prostaglandin (PG) F2alpha, activated the ERK1 (p44mapk) and ERK2 (p42mapk) members of the mitogen-activated protein (MAP) kinase family in primary cultures of rat hepatocytes, measured as phosphorylation of myelin basic protein (MBP) by a partially purified enzyme, immunoblotting, and in-gel assays. All these agonists induced a peak activation (two to threefold increase in MBP-phosphorylation) at 3-5 min, followed by a brief decrease, and then a sustained elevation or a second increase of the MAP kinase activity that lasted for several hours. Although all the above agents also stimulated PI-PLC, implicating a Gq-dependent pathway, the elevations of the concentration of inositol (1,4,5)-trisphosphate did not correlate well with the MAP kinase activity. Furthermore, pretreatment of the cells with pertussis toxin markedly reduced the MAP kinase activation by angiotensin II, vasopressin, norepinephrine, or PGF2alpha. In addition, hepatocytes pretreated with pertussis toxin showed a diminished MAP kinase response to epidermal growth factor (EGF). The results indicate that agonists acting via G-protein-coupled receptors have the ability to induce sustained activation of MAP kinase in hepatocytes, and suggest that Gi-dependent mechanisms are required for full activation of the MAP kinase signal transduction pathway by G-protein-coupled receptors as well as the EGF receptor.  相似文献   

5.
Genetic knock-out in mice of peroxisome proliferator-activated receptor-alpha (PPAR alpha) can prolong inflammation in response to leukotriene B4. Although cyclooxygenase 2 has been shown to be induced by PPAR activation, the effect of PPAR agonists on the key inflammatory enzyme systems of nitric oxide synthase (NOS) and stress proteins has not been investigated. The effect on these of naturally occurring eicosanoid PPAR agonists (leukotriene B4 and 8(S)-hydroxyeicosatetraenoic acid, which are PPAR alpha selective; PGA2, PGD2, PGJ2, and delta12PGJ2, which are PPAR gamma selective) and the synthetic PPAR alpha agonist Wy14,643 was examined in activated RAW264.7 murine macrophages. Leukotriene B4 and 8(S)-hydroxyeicosatetraenoic acid stimulated nitrite accumulation, indicative of enhanced NOS activity. PGA2, PGD2, PGJ2, delta12PGJ2, and Wy14,643 reduced nitrite accumulation, with delta12PGJ2 being the most effective. The mechanism behind this reduction was examined using Western blotting. Inhibition of nitrite accumulation was associated with a fall in inducible NOS protein and an induction of heme oxygenase 1, correlating both dose dependently and temporally. Other proteins examined (cyclooxygenase 2, heme oxygenase 2, heat shock protein 70, and glucose-regulated protein 78) were unaffected. The data suggest that naturally occurring PPAR agonists can inhibit the inducible NOS enzyme pathway. This inhibition may be mediated by modulation of the stress protein, heme oxygenase 1. Thus, the generation of eicosanoid breakdown products during inflammation may contribute to its eventual resolution by activation of the PPAR system. This system may thus represent a novel target for therapeutic intervention in inflammatory disease.  相似文献   

6.
7.
Although the G protein betagamma dimer is an important mediator in cell signaling, the mechanisms regulating its activity have not been widely investigated. The gamma12 subunit is a known substrate for protein kinase C, suggesting phosphorylation as a potential regulatory mechanism. Therefore, recombinant beta1 gamma12 dimers were overexpressed using the baculovirus/Sf9 insect cell system, purified, and phosphorylated stoichiometrically with protein kinase C alpha. Their ability to support coupling of the Gi1 alpha subunit to the A1 adenosine receptor and to activate type II adenylyl cyclase or phospholipase C-beta was examined. Phosphorylation of the beta1 gamma12 dimer increased its potency in the receptor coupling assay from 6.4 to 1 nM, changed the Kact for stimulation of type II adenylyl cyclase from 14 to 37 nM, and decreased its maximal efficacy by 50%. In contrast, phosphorylation of the dimer had no effect on its ability to activate phospholipase C-beta. The native beta1gamma10 dimer, which has 4 similar amino acids in the phosphorylation site at the N terminus, was not phosphorylated by protein kinase C alpha. Creation of a phosphorylation site in the N terminus of the protein (Gly4 --> Lys) resulted in a beta1 gamma10G4K dimer which could be phosphorylated. The activities of this beta gamma dimer were similar to those of the phosphorylated beta1 gamma12 dimer. Thus, phosphorylation of the beta1 gamma12 dimer on the gamma subunit with protein kinase C alpha regulates its activity in an effector-specific fashion. Because the gamma12 subunit is widely expressed, phosphorylation may be an important mechanism for integration of the multiple signals generated by receptor activation.  相似文献   

8.
Retinoic acid (RA) activated the extracellular signal-regulated kinase (ERK) 2 mitogen-activated protein kinase (MAPK) of HL-60 human myeloblastic leukemia cells before causing myeloid differentiation and cell cycle arrest associated with hypophosphorylation of the retinoblastoma (RB) tumor suppressor protein. ERK2 activation by mitogen-activated protein/ERK kinase (MEK) was necessary for RA-induced differentiation in studies using PD98059 to block MEK phosphorylation. G0 growth arrest and RB tumor suppressor protein hypophosphorylation (which is typically associated with induced differentiation and G0 arrest), two putatively RB-regulated processes, also depended on ERK2 activation by MEK. Activation of ERK2 by RA occurred within hours and persisted until the onset of RB hypophosphorylation, differentiation, and arrest. ERK2 activation was probably needed early, because delaying the addition of PD98059 relative to that of RA restored most of the RA-induced cellular response. In contrast to RA (which activates RA receptors (RARs) and retinoid X receptors in HL-60 cells with its metabolite retinoids), a retinoid that selectively binds RAR-gamma, which is not expressed in HL-60 cells, was relatively ineffective in causing ERK2 activation. This is consistent with the need for a nuclear retinoid receptor function in RA-induced ERK2 activation. RA reduced the amount of unphosphorylated RAR-alpha, whose activation is necessary for RA-induced differentiation and arrest. This shifted the ratio of phosphorylated:unphosphorylated RAR-alpha to predominantly the phosphorylated form. Unlike other steroid thyroid hormone receptors susceptible to phosphorylation and activation by MAPKs, RAR-alpha was not phosphorylated by the activated ERK2 MAPK. The results thus show that RA augments MEK-dependent ERK2 activation that is needed for subsequent RB hypophosphorylation, cell differentiation, and G0 arrest. The process seems to be nuclear receptor dependent and an early seminal component of RA signaling causing differentiation and growth arrest.  相似文献   

9.
The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (alpha, beta, and gamma isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7alpha isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7alpha isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7beta and MKK7gamma isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that the MKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.  相似文献   

10.
The recent cloning of a family of high affinity melatonin receptors has provided us with a unique opportunity to define the signal transduction pathways used by these receptors. We have studied signaling through the human Mel1a receptor subtype by stable expression of receptor complementary DNA in NIH 3T3 cells. Our data indicate that the human Mel1a receptor is coupled to inhibition of forskolin-stimulated cAMP accumulation by a pertussis toxin-sensitive G protein. Although melatonin alone is without effect on phosphoinositide hydrolysis, it potentiates the effects of PGF2 alpha stimulation on phospholipase C activation. Melatonin potentiates arachidonate release stimulated by PGF2 alpha and by ionomycin. The effects of melatonin on arachidonate release are sensitive to inhibition of protein kinase C. They are independent of the effects of melatonin on cAMP and do not appear to involve activation of mitogen-activated protein kinase. The effects of melatonin on both phosphoinositide hydrolysis and arachidonate release are sensitive to pertussis toxin treatment. Thus, we show that the melatonin signal is transduced by parallel pathways involving inhibition of adenylyl cyclase and potentiation of phospholipase activation.  相似文献   

11.
Erythropoietin (EPO) is a hormone, as well as a hematopoietic growth factor, that specifically regulates the proliferation and differentiation of erythroid progenitor cells. Although the membrane-bound receptor for EPO has no intrinsic kinase activity, it triggers the activation of protein kinases via phospholipases A2, C, and D. A cascade of serine and threonine kinases, including Raf-1, MAP kinase and protein kinase C (PKC) is activated following tyrosine phosphorylation. In this study, we have examined whether changes in nuclear PKC and 1,2-diacylglycerol (DAG) are induced following EPO treatment of the murine target cell line, B6SUt.EP. Western blot analysis using isoform-specific antibodies demonstrated the presence of PKC beta II, but not PKC alpha, beta I, gamma, epsilon, delta, eta, or zeta in the nuclei of cells stimulated with EPO. The increase in nuclear beta II levels was accompanied by an immediate rise in DAG mass levels with both of the increases peaking by 1 min. These rapid increases in nuclear DAG and PKC beta II expression suggest a mechanism for EPO-induced changes in gene expression necessary for cell proliferation.  相似文献   

12.
Some forms of G protein-coupled receptor signaling, such as activation of mitogen-activated protein kinase cascade as well as resensitization of receptors after hormone-induced desensitization, require receptor internalization via dynamin-dependent clathrin-coated pit mechanisms. Here we demonstrate that activation of beta2-adrenergic receptors (beta2-ARs) leads to c-Src-mediated tyrosine phosphorylation of dynamin, which is required for receptor internalization. Two tyrosine residues, Tyr231 and Tyr597, are identified as the major phosphorylation sites. Mutation of these residues to phenylalanine dramatically decreases the c-Src-mediated phosphorylation of dynamin following beta2-AR stimulation. Moreover, expression of Y231F/Y597F dynamin inhibits beta2-AR internalization and the isoproterenol-stimulated mitogen-activated protein kinase activation. Thus, agonist-induced, c-Src-mediated tyrosine phosphorylation of dynamin is essential for its function in clathrin mediated G protein-coupled receptor endocytosis.  相似文献   

13.
The alpha 2-adrenergic receptors are linked to inhibition of adenylylcyclase and, under certain circumstances, to stimulation of phospholipid hydrolysis via pertussis toxin-sensitive G proteins. Here we show that alpha 2-adrenergic receptors can couple to an alternative signaling pathway. When expressed in Rat-1 cells, stimulation of the alpha 2A receptor, which couples to Gi2 and Gi3, causes rapid, transient activation of the protooncogene product p21ras as measured by an increase in the amount of bound GTP. Furthermore, alpha 2A receptor stimulation causes rapid phosphorylation of the p42 mitogen-activated protein (MAP) kinase. Pertussis toxin completely inhibits both p21ras activation and MAP kinase phosphorylation, but both responses appear to be independent of adenylylcyclase inhibition or phospholipase stimulation. Thus, alpha 2-adrenergic receptors can couple to the p21ras-MAP kinase pathway via Gi, which may explain the mitogenic potential of alpha 2 agonists in certain cell types; together with previous results, these findings further suggest that activation of this pivotal signaling pathway may be a common event in the action of Gi-coupled receptors.  相似文献   

14.
In preadipocytes, alpha2-adrenergic receptor (alpha2-AR) stimulation leads to a Gi/Go-dependent rearrangement of actin cytoskeleton. This is characterized by a rapid cell spreading, the formation of actin stress fibers, and the increase in tyrosyl phosphorylation of the focal adhesion kinase (pp125(FAK)). These cellular events being tightly controlled by the small GTPase p21(rhoA), the existence of a Gi/Go-dependent coupling of alpha2-AR to p21(rhoA) in preadipocytes was proposed. In alpha2AF2 preadipocytes (a cell clone derived from the 3T3F442A preadipose cell line and which stably expresses the human alpha2C10-adrenergic receptor) alpha2-adrenergic-dependent induction of cell spreading, formation of actin stress fibers, and increase in tyrosyl phosphorylation of pp125(FAK) were abolished by pretreatment of the preadipocytes with the C3 exoenzyme, a toxin which impairs p21(rhoA) activity by ADP-ribosylation. Conversely, C3 exoenzyme had no effect on the alpha2-adrenergic-dependent increase in tyrosyl phosphorylation and shift of ERK2 mitogen-activated protein kinase. alpha2-Adrenergic stimulation also led to an increase in GDP/GTP exchange on p21(rhoA), as well as to an increase in the amount of p21(rhoA) in the particulate fraction of alpha2AF2 preadipocytes. Stable transfection of alpha2AF2 preadipocytes with the COOH-terminal domain of betaARK1 (betaARK-CT) (a blocker of Gbeta gamma-action), strongly inhibited the alpha2-adrenergic-dependent increase in tyrosyl phos- phorylation and shift of ERK2, without modification of the tyrosyl phosphorylation of pp125(FAK) and spreading of preadipocytes. These results show that alpha2-adrenergic-dependent reorganization of actin cytoskeleton requires the activation of p21(rhoA) in preadipocytes. Conversely to the activation of the p21(ras)/mitogen-activated protein kinase pathway, the alpha2-adrenergic activation of p21(rhoA)-dependent pathways are independent of the beta gamma-subunits of heterotrimeric G proteins.  相似文献   

15.
Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium-calmodulin plays a central role in the calcium-dependent regulation of tyrosine phosphorylation by G protein-coupled receptors in some systems.  相似文献   

16.
17.
18.
The role of RAR alpha 1 and RAR gamma 2 AF-1 and AF-2 activation functions and of their phosphorylation was investigated during RA-induced primitive and parietal differentiation of F9 cells. We found that: (i) primitive endodermal differentiation requires RAR gamma 2, whereas parietal endodermal differentiation requires both RAR gamma 2 and RAR alpha 1, and in all cases AF-1 and AF-2 must synergize; (ii) primitive endodermal differentiation requires the proline-directed kinase site of RAR gamma 2-AF-1, whereas parietal endodermal differentiation additionally requires that of RAR alpha 1-AF-1; (iii) the cAMP-induced parietal endodermal differentiation also requires the protein kinase A site of RAR alpha-AF-2, but not that of RAR gamma; and (iv) the AF-1-AF-2 synergism and AF-1 phosphorylation site requirements for RA-responsive gene induction are promoter context-dependent. Thus, AF-1 and AF-2 of distinct RARs exert specific cellular and molecular functions in a cell-autonomous system mimicking physiological situations, and their phosphorylation by kinases belonging to two main signalling pathways is required to enable RARs to transduce the RA signal during F9 cell differentiation.  相似文献   

19.
The alpha 5 alpha 1 integrin, a fibronectin receptor, has been implicated in the control of cell growth and the regulation of gene expression. We report that disruption of ligation between alpha 5 alpha 1 and fibronectin by integrin alpha 5 subunit or fibronectin monoclonal antibodies stimulated DNA synthesis in growth-arrested FET human colon carcinoma cells. This stimulation only occurred when monoclonal antibody was added in the early G1 phase of the cell cycle after release from quiescence by fresh medium. Stimulation of DNA synthesis by alpha 5 or fibronectin antibody was concentration- and time-dependent. FET cells expressed alpha 4 beta 1 integrin (another fibronectin receptor); however, addition of anti-human integrin alpha 4 monoclonal antibody had no effect on DNA synthesis. Treatment with alpha 5 monoclonal antibody led to a marked increase in the expression of CDK4 in G1 phase of the cell cycle and consequently increased the phosphorylation of retinoblastoma protein. alpha 5 monoclonal antibody treatment increased both cyclin A- and cyclin E-associated kinase activity which was accompanied by increased protein levels of CDK2 and cyclin A. Western blotting of immunoprecipitates demonstrated increased CDK2-cyclin E and CDK2-cyclin A complexes in cells treated with alpha 5 monoclonal antibody. Furthermore, disruption of alpha 5 alpha 1/fibronectin ligation activated mitogen-activated protein kinase p44 and p42 (extracellular signal-regulated kinase 1 and 2). Pretreatment of the cells with a specific inhibitor of MEK-1, PD98059, blocked the alpha 5 monoclonal antibody-induced mitogen-activated protein kinase activity. In addition PD98059 prevented alpha 5 monoclonal antibody-induced DNA synthesis. Since alpha 5 alpha 1 ligation to fibronectin is associated with decreased growth parameters, our results indicate that ligation of alpha 5 alpha 1 integrin to fibronectin results in suppressed mitogen-activated protein kinase activity which in turn inhibits cyclin-dependent kinase activity in growth-arrested cells.  相似文献   

20.
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyl phosphorylation of the beta-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号