首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review, unify and extend work pertaining to evaluating mode mixity of interfacial fracture utilizing the virtual crack closure technique (VCCT). From the VCCT, components of the strain energy release rate (SERR) are obtained using the forces and displacements near the crack tip corresponding to the opening and sliding contributions. Unfortunately, these components depend on the crack extension size, Δ, used in the VCCT. It follows that a mode mixity based upon these components also will depend on the crack extension size. However, the components of the strain energy release rate can be used for determining the complex stress intensity factors (SIFs) and the associated mode mixity. In this study, we show that several—seemingly different—suggested methods presented in the literature used to obtain mode mixity based on the stress intensity factors are indeed identical. We also present an alternative, simpler quadratic equation to this end. Moreover, a Δ-independent strain energy release based mode mixity can be defined by introducing a “normalizing length parameter.” We show that when the reference length (used for the SIF-based mode mixity) and the normalizing length (used for Δ-independent SERR-based mode mixity) are equal, the two mode mixities are only shifted by a phase angle, depending on the bimaterial parameter ε.  相似文献   

2.
An interface element tailored for the virtual crack closure technique (VCCT) was used to study an example of dynamic crack propagation under mixed mode loading. Through this interfacial element approach, VCCT can be implemented into a commercial finite element analysis (FEA) code having user subroutines without interrupting the main code. Further, with the implementation of relevant fracture criteria, this interface element can be used to simulate a wide range of fracture problems by utilizing the enhanced capabilities available by the commercial FEA codes. For illustration, this element has been implemented with the commercial FEA software ABAQUS® through the user defined element (UEL). One example of fast crack propagation at constant speed and under mixed-mode loading was examined by comparison to the other’s numerical results using singular moving elements. No convergence difficulty was encountered for all the cases with different values of crack velocity. Neither singular element, nor the collapsed element was required. Therefore, due to its simplicity, the VCCT interface element as demonstrated could be a potential tool for engineers to practice dynamic fracture analysis in conjunction with commercial FEA codes.  相似文献   

3.
The dynamic stress intensity factors for a semi-infinite crack in an otherwise unbounded elastic body is investigated. The crack is subjected to a pair of suddenly-applied shear point loads on its faces at a distance l away from the crack tip. This problem is treated as the superposition of two problems. The first problem considers the disturbance by a concentrated shear force acting on the surface of an elastic half space, while the second problem discusses a half space with its surface subjected to the negative of the tangential surface displacements induced by the first problem in the front of the crack edge. A fundamental problem is proposed and solved by means of integral transforms together with the application of the Wiener–Hopf technique and Cagniard–de Hoop method. Exact expressions are then derived for the mode II and III dynamic stress intensity factors by taking integration over the fundamental solution. Some features of the solutions are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper describes an interface element to calculate the strain energy release rates based on the virtual crack closure technique (VCCT) in conjunction with finite element analysis (FEA). A very stiff spring is placed between the node pair at the crack tip to calculate the nodal forces. Dummy nodes are introduced to extract information for displacement openings behind the crack tip and the virtual crack jump ahead of the crack tip. This interface element leads to a direct calculation of the strain energy release rate (both components GI and GII) within a finite element analysis without extra post-processing. Several examples of stationary cracks under impact loading were examined. Dynamic stress intensity factors were converted from the calculated transient strain energy release rate for comparison with the available solutions by the others from numerical and experimental methods. The accuracy of the element is validated by the excellent agreement with these solutions. No convergence difficulty has been encountered for all the cases studied. Neither special singular elements nor the collapsed element technique is used at the crack tip. Therefore, the fracture interface element for VCCT is shown to be simple, efficient and robust in analyzing crack response to the dynamic loading. This element has been implemented into commercial FEA software ABAQUS® with the user defined element (UEL) and should be very useful in performing fracture analysis at a structural level by engineers using ABAQUS®.  相似文献   

5.
In this work, the influence of crack propagation velocity in the stress intensity factor has been studied. The analysis is performed with a lattice method and a linear elastic constitutive model. Numerous researchers determined the relationship between the dynamic stress intensity factor and crack propagation velocity with experimental and analytical results. They showed that toughness increases asymptotically when the crack tip velocity is near to a critical. However, these methods are very complex and computationally expensive; furthermore, the model requires the use of several parameters that are not easily obtained. Moreover, its practical implementation is not always feasible. Hence, it is usually omitted. This paper aims to capture the physics of this complex problem with a simple fracture criterion. The selected criterion is based on the maximum principal strain implemented in a lattice model. The method used to calculate the stress intensity factor is validated with other numerical methods. The selected example is a finite 2D notched under mode I fracture and different loads rates. Results show that the proposed model captures the asymptotic behaviour of the SIF in function of crack speed, as reported in the aforementioned models.  相似文献   

6.
The virtual crack closure integral (VCCI) method is used to evaluate the stress intensity factor (SIF) and energy release rate (ERR) of an interface crack under thermal load. The VCCIs used in this work include the traditionally known “Mode I” and “Mode II” VCCIs and an additional coupling VCCI. The singularity element is used in the finite element method (FEM) implementation. The SIF and ERR calculated by the FEM are compared to the exact solution in the case of a joint dissimilar semi-infinite plates with double edge crack under thermal loading. The FEM result agrees well with the exact solution for relatively coarse meshes. The contribution of the mesh density and material mismatch to the FEM error is also explored. The VCCI method is used with the multi-scale FEM in a delamination risk assessment of a low-k integrated circuits device in flip-chip plastic ball grid array packages. The ERR is calculated for different package configurations and the prediction of the delamination risk is confirmed by reliability tests.  相似文献   

7.
Thermoelastic stress analysis has been developed in recent years as a direct method of investigating the crack tip stresses in a structure under cyclic loading. This is a consequence of the fact that stress intensity factors obtained from thermoelastic experiments are determined from the cyclic stress field ahead of a fatigue crack, rather than inferred from measurement of the crack length and load range. In the present paper the results of fatigue crack growth tests performed on welded ferritic steel plates are reported. From the results it can be observed that the technique is sensitive to the effects of crack closure and the presence of tensile and compressive residual stresses due to welding.  相似文献   

8.
The two-dimensional and three-dimensional parametric finite element analysis (FEA) of composite flat laminates with two through-the-width delamination types: 04/(±θ)6//04 and 04//(±θ)6//04 (θ = 0°, 45°, and “//” denotes the delaminated interface) under compressive load are performed to explore the effects of multiple delaminations on the postbuckling properties. The virtual crack closure technique which is employed to calculate the energy release rate (ERR) for crack propagation is used to deal with the delamination growth. Three typical failure criteria: B-K law, Reeder law and Power law are comparatively studied for predicting the crack propagation. Effects of different mesh sizes and pre-existing crack length on the delamination growth and postbuckling properties of composite laminates are discussed. Interaction between the delamination growth mechanisms for multiple cracks for 04//(±θ)6//04 composite laminates is also investigated. Numerical results using FEA are also compared with those by existing models and experiments.  相似文献   

9.
This paper proposes a simple, efficient algorithm to trace a moving delamination front with an arbitrary and changing shape so that delamination growth can be analyzed by using stationary meshes. Based on the algorithm, a delamination front can be defined by two vectors that pass through any point on the front. The normal vector and the tangent vector for the local coordinate system can then be obtained based on the two delamination front vectors. An important feature of this approach is that it does not require the use of meshes that are orthogonal to the delaminations front. Therefore, the approach avoids adaptive re-meshing techniques that may create a large computational burden in delamination growth analysis. An interface element that can trace the instantaneous delamination front, determine the local coordinate system, approximate strain energy release rate components and apply fracture mechanics criteria has been developed and implemented into ABAQUS® with its user-defined element (UEL) feature. In this Part I of a two-part paper, the approach and its implementation are described and validated by comparison to results from existing cases having analytical solutions or other established FEA predictions.  相似文献   

10.
In this paper, the work of Lin and Abel [Lin SC, Abel JF. Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 1988;38:217-35] is further extended to the general case of multiple crack systems under mixed-mode loading. Analytical expressions are presented for stress intensity factors and their derivatives for a multiply cracked body using the mode decomposition technique. The salient feature of this method is that the stress intensity factors and their derivatives for the multiple crack system are computed in a single analysis. It is shown through two-dimensional numerical examples that the proposed method gives very accurate results for the stress intensity factors and their derivatives. It is also shown that the variation of mode I and II displacements at one crack-tip influence the mode I and II stress intensity factors at any other crack. The computed errors were about 0.4-3% for stress intensity factors, and 2-4% for their first order derivatives for the mesh density used in the examples.  相似文献   

11.
基于虚拟裂纹闭合技术的应变能释放率分析   总被引:3,自引:1,他引:2  
基于虚拟裂纹闭合技术(VCCT),建立了复合材料层合板层间裂纹尖端的应变能释放率(SERR)三维有限元计算模型。该模型考虑了裂纹尖端大转动和离散单元形状变化对应变能释放率计算的影响,修正了裂纹尖端应变能释放率的计算方法。利用该模型计算了裂纹长度为15 mm和35 mm时纯Ⅰ型和纯Ⅱ型的应变能释放率,纯Ⅰ型应变能释放率分别为 207 J/m2和 253 J/m2;纯Ⅱ型应变能释放率分别为 758 J / m 2和 1040 J / m2;计算值与试验值吻合得很好。同时,该模型计算了混合型不同比值 R=(G/G+G)的长裂纹层合板层间断裂过程的应变能释放率,其中Ⅰ型和Ⅱ型应变能释放率计算值与试验平均值的最大误差为 11.4%,最小误差为 0.4%。该模型能有效计算裂纹尖端的应变能释放率。  相似文献   

12.
A fractographic study1 was performed on Al-alloy fatigue fracture surfaces produced by programmed load sequences. The load sequences included steps of constant amplitude cycles at three different stress ratios, each step is preceded by a small number of high amplitude cycles designed to avoid the influence of crack closure and to serve as fractographic markers. The experiments were conducted on different specimen geometries to produce conditions associated with a long crack under fully elastic conditions and a short crack in a notched coupon seeing high local post yield stress conditions. Crack sizes covered in the study ranged from 0.02 to 12 mm, and growth rates ranged from 2×10−7 to 4×10−5 mm cycle−1. Fractographic evidence from the study suggests that the crack growth rate can vary by up to a factor of five with applied stress ratio change from 0.64 to 0.73. In the case of the long crack, the effect is less noticeable or totally absent. In the case of naturally initiating notch root cracks, the effect is more pronounced at higher stress level and lower crack growth rate.  相似文献   

13.
The interface element and VCCT process described in Part I of this two-part paper, developed to compute strain energy release rates of an arbitrary delamination front using non-orthogonal finite element meshes, are further investigated in this paper for robustness and ease of use in tracking delamination growth. Standard 3-D elements are used in conjunction with the interface elements. No special singularity elements are required. Stationary meshes that are independent of the shape of the delamination front can be used. Three cases having different initial delamination shapes are examined. The process is shown to be insensitive to the values used for the interfacial spring stiffness, the orientation of the interface element, or even the mesh pattern if the mesh has a reasonable degree of refinement. Therefore, the method can be used with ease and confidence in general-purpose delamination growth analysis for engineering applications.  相似文献   

14.
New numerical methods were presented for stress intensity factor analyses of two-dimensional interfacial crack between dissimilar anisotropic materials subjected to thermal stress. The virtual crack extension method and the thermal M-integral method for a crack along the interface between two different materials were applied to the thermoelastic interfacial crack in anisotropic bimaterials. The moving least-squares approximation was used to calculate the value of the thermal M-integral. The thermal M-integral in conjunction with the moving least-squares approximation can calculate the stress intensity factors from only nodal displacements obtained by the finite element analysis. The stress intensity factors analyses of double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load were demonstrated. Excellent agreement was achieved between the numerical results obtained by the present methods and the exact solution. In addition, the stress intensity factors of double edge cracks in jointed dissimilar anisotropic semi-infinite plates subjected to thermal loads were analyzed. Their results appear reasonable.  相似文献   

15.
In finite element analysis the interaction integral has been a useful tool for computing the stress intensity factors for fracture analysis. This work extends the interaction integral to account for non-uniform temperatures in the calculation of stress intensity factors for three dimensional curvilinear cracks either in a homogeneous body or on a bimaterial interface. First, the derivation of the computational algorithm, which includes the additional terms developed by the non-zero gradient of the temperature field, is presented in detail. The algorithm is then implemented in conjunction with commercial finite element software to calculate the stress intensity factors of a crack undergoing non-uniform temperatures on both a homogeneous and a bimaterial interface. The numerical results displayed path independence and showed excellent agreement with available analytical solutions.  相似文献   

16.
The main purpose of this paper is to investigate the accuracy of the least-squares method incorporating the finite element method for finding three-dimensional (3-D) Stress Intensity Factors (SIFs). Numerical simulations in this paper indicate that the least-squares method can be used to calculate 3-D SIFs accurately, if three or more than three displacement or stress terms are included. The calculated SIFs of this method are independent of the maximum radius of the area from which data is included; furthermore, a very fine mesh is not necessary. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

18.
Thermal stresses, one of the main causes of interfacial failure between dissimilar materials, arise from different coefficients of linear thermal expansion. Two efficient numerical procedures in conjunction with the finite element method (FEM) for the stress intensity factor (SIF) analysis of interface cracks under thermal stresses are presented. The virtual crack extension method and the crack closure integral method are modified using the superposition method. The SIF analyses of some interface crack problems under mechanical and thermal loads are demonstrated. Very accurate mode separated SIFs are obtained using these methods.  相似文献   

19.
Many important interface crack problems are inherently three-dimensional in nature, e.g., debonding of laminated structures at corners and holes. In an effort to accurately analyze three-dimensional interface fracture problems, an efficient computational technique was developed that utilizes enriched crack tip elements containing the correct interface crack tip asymptotic behavior. In the enriched element formulation, the stress intensity factors K I, K II, and K III are treated as additional degrees of freedom and are obtained directly during the finite element solution phase. In this study, the results that should be of greatest interest are obtained for semi-circular surface and quarter-circular corner cracks. Solutions are generated for uniform remote tension and uniform thermal loading, over a wide range of bimaterial combinations. Of particular interest are the free surface effects, and the influence of Dundurs’ material parameters on the strain energy release rate magnitudes and corresponding phase angles.  相似文献   

20.
Experimental backtracking technique and finite element analysis have been employed to evaluate the stress intensities along the front of an elliptical surface crack in a cylindrical rod. The finite element solution covers a wide range of crack shapes loaded under end-free and end-constrained axial tension and pure bending. Convenient closed form stress intensity expressions along the whole crack front for each of the loading cases have been given in terms of the crack aspect ratio, crack depth ratio and place ratio.The closed form solutions have been compared against a number of representative solutions collected from the literature. It has been found that different finite element results for the interior points are generally in good mutual agreement, while solutions derived from other methods may sometimes indicate different trends. At the surface interception point agreement is less good because of a complication in the interpretation of stress intensity there.Experimental backtracking results on the end-constrained axial tension case corroborate well with the closed form solution presented. It suggests that the current closed form solution is adequate in describing the stress intensities along the whole crack front of real surface cracks in cylindrical rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号