共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and highly selective flow injection on-line pre-concentration and separation-flame atomic absorption spectrometric method was developed for routine analysis of trace amounts of lead in biological and environmental samples. The selective preconcentration of lead was achieved in a wide range of sample acidity (0.075 to > or = 3 mol L(-1)HNO3) on a microcolumn (145 microL) packed with a macrocycle immobilized on silica gel. The lead retained on the column was effectively eluted with an EDTA solution (0.03 mol L(-1), pH 10.5). Three kinds of potential interferences, i.e., preconcentration inferences from metal ions with an ionic radius similar to that of Pb(II) due to their competition for the cavity of the macrocyle, elution kinetic interferences from ions which form stable complexes with EDTA due to their competition for EDTA, and interferences in the atomizer from residual matrix, were evaluated and compared in view of the read-out mode of the analyte response (peak area vs peak height), column wash step (with vs without), column capacity (50 vs 145 microL), and column shape (conical vs cylindrical). The results showed that a combination of increase in column capacity, quantitation based on peak area, and use of dilute nitric acid for column wash before elution efficiently avoid the above-mentioned potential interferences. With the use of a 145 microL column the present system tolerated up to 0.1 g L(-1) Ba(II), 1 g L(-1) Sr(II), and at least 10 g L(-1) Fe(III), Cu(II), Ni(II), Zn(II), Cd(II), Al(III), K(I), Na(I), CaII), and Mg(II) in the sample digest. Further improvement of the interference tolerance can be achieved by increasing column capacity if more complicated samples need to be analyzed. At a sample loading rate of 3.9 mL min(-1) with 30-s preconcentration, an enrichment factor of 52, a detection limit (3s) of 5 micrograms L(-1) Pb in the digest and a sampling frequency of 63 h(-1) were obtained. The precision (RSD, n = 11) at the 200 micrograms L(-1) level was 1.9%. The enrichment factor and the detection limit can be further improved by increasing sample loading rate without degradation in the efficiency due to the favorable kinetics and low hydrodynamic impedance of the present system. The analytical results obtained by the proposed method for a number of biological and environmental standard reference materials were in good agreement with the certified and recommended values. 相似文献
2.
A novel nonchromatographic speciation technique for ultratrace methylmercury in biological materials was developed by flow injection microcolumn displacement sorption preconcentration and separation coupled on-line with electrothermal atomic absorption spectrometry (ETAAS). In the developed technique, Cu(II) was first on-line complexed with diethyldithiocarbamate (DDTC), and the resultant Cu-DDTC was presorbed onto a microcolumn packed with the sorbent from a cigarette filter. Selective preconcentration of methylmercury (MeHg) in the presence of Hg(II), ethylmercury (EtHg), and phenylmercury (PhHg) was achieved at pH 6.8 through loading the sample solution onto the microcolumn due to a displacement reaction between MeHg and the presorbed Cu-DDTC. The retained MeHg was subsequently eluted with 50 microL of ethanol and on-line determined by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their DDTC complexes relative to Cu-DDTC were minimized without the need of any masking reagents. No interferences from 5.5 mg L(-1) Cu(II), 4.5 mg L(-1) Cd(II), 2.5 mg L(-1) Cr(III), 3 mg L(-1) Fe(III), 10 mg L(-1) Ni(II), 10 mg L(-1) Pb(II), and at least 25 mg L(-1) Zn(II) were observed for the determination of MeHg at the 50 ng L(-1) level (as Hg). With the consumption of only 3.4 mL of sample solution, an enhancement factor of 75, a detection limit of 6.8 ng L(-1) (as Hg) in the digest (corresponding to 3.4 ng g(-1) in original solid sample for a final 50 mL of digest of 0.1 g of solid material), and a precision (RSD, n = 13) of 2.3% for the determination of methylmercury at the 50 ng L(-1) (as Hg) level were achieved at a sample throughput of 30 samples h(-1). The recoveries of methylmercury spike in real fish samples ranged from 97 to 108%. The developed technique was validated by determination of methylmercury in a certified reference material (DORM-2, dogfish muscle), and was shown to be useful for the determination of methylmercury in real fish samples. 相似文献
3.
A novel method has been developed for the speciation of chromium in natural water samples based on cloud point extraction (CPE) separation and preconcentration, and determination by graphite furnace atomic absorption spectrometry (GFAAS). In this method, Cr(III) reacts with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (PMBP) yielding a hydrophobic complex, which then is entrapped in the surfactant-rich phase, whereas Cr(VI) remained in aqueous phase. Thus, separation of Cr(III) and Cr(VI) could be realized. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by using ascorbic acid as reducing reagent. PMBP was used not only as chelating reagent in CPE procedure, but also as chemical modifier in GFAAS determination of chromium. The detection limit for Cr(III) was 21 ng L(-1) with an enrichment factor of 42, and the relative standard deviation was 3.5% (n=7, c=10 ng mL(-1)). The proposed method has been applied to the speciation of chromium in natural water samples with satisfactory results. 相似文献
4.
A flow injection manifold with an air-segmented and air-transported operational sequence for on-line coupling of microcolumn separation and preconcentration to electro-thermal atomic absorption spectrometry (ETAAS) was developed for the determination of (ultra)trace selenite and selenate in water. The determination of selenite was achieved by selective reaction with pyrrolidine dithiocarbamate (PDC), sorption of the resultant Se-PDC compound onto a conical microcolumn (10.2 microL) packed with RP C18 sorbent, elution with ethanol, and detection by ETAAS. The concentration of selenate was obtained as the difference between the concentrations of selenite after and before prereduction of selenate to selenite. With the developed manifold and operation sequence,the dispersion during elution and eluate transport and the eluent volume required for complete elution of the sorbed analyte were minimized. As a result, the sorbed analyte was quantitatively eluted from the column with only 26 microL of ethanol, and all the eluate was automatically introduced into the graphite tube by an air flow without the need of preheating the graphite tube or precise timing. Pretreatment of the graphite tube with iridium as a long-term "permanent" modifier effectively prevented analyte loss arising from the high volatility of the Se-PDC compound and greatly improved the precision, sensitivity, and detection limit. One thermal pretreatment of the graphite tube with injection of 150 microgram of iridium made possible at least 200 repetitive atomization cycles. With a preconcentration time of 180 s and a sample flow rate of 1.4 mL min(-1), an enhancement factor of 112 was achieved in comparison with direct injection of 30 microL of aqueous solution. The detection limit (3s) was 4.5 ng L(-1)Se. The RSD (n = 7) was 3.8% at 20 ng L(-1)Se. The concentrations of selenite and selenate determined in synthetic aqueous mixtures were in good agreement with the expected values. The recoveries for selenite from spiked seawater samples ranged from 98 to 102%. The concentrations of selenite in several seawater reference materials obtained with simple aqueous standard solutions for calibration agreed well with the certified and information values, respectively. In addition, the developed method was successfully applied to the certification of selenite and selenate in water. 相似文献
5.
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. 相似文献
6.
Suvardhan K Kumar KS Krishnaiah L Rao SP Chiranjeevi P 《Journal of hazardous materials》2004,112(3):233-238
A procedure was developed for the determination of nickel(II) in water samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) after preconcentration on coniine dithiocarbamate (CDC) supported by Borassus Flabellifer inflorescence. The sorbed element was subsequently eluted with 0.4M nitric acid and the acid eluates are analysed by ICP-AES. The influence of various parameters such as pH, flow rate of sample, eluent concentration, volume of the sample and volume eluent were investigated. Under the optimal conditions, nickel in aqueous sample was concentrated about 100-fold. Nickel recovery was obtained by the proposed method in range of 98.9-99.9%. This method is also applied for the analysis of spiked and natural water samples. The results provide strong evidence to support the hypothesis of an adsorption mechanism. 相似文献
7.
Thallium (III) ion-imprinted polymer (IIP) particles were synthesized by preparing the ternary complex of thallium (III) ions with 5,7-dichloroquinoline-8-ol (DCQ) and 4-vinylpyridine (VP). Thermal copolymerization with methyl methacrylate (functional monomer, MMA) and ethyleneglycoldimethacrylate (cross-linking monomer, EGDMA) was then performed in the presence of acetonitrile (porogen) and 2,2- azobisisobutyronitrile(initiator, AIBN). The imprinted ion was removed from polymer by stirring of the above particles with 5M HNO(3) to obtain the leached IIP particles. Moreover, control polymer (CP) particles were similarly prepared without the thallium (III) ions. The unleached and leached IIP particles were characterized by surface area analysis (BET), X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). The preconcentration of thallium (III) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Electrothermal atomic absorption spectrometry (ETAAS) was employed for determination of thallium in aqueous solution. The limit of detection for the method was 0.02 ng mL(-1), while the relative standard deviation for five replicates was 2.6%. 相似文献
8.
Kiran K Kumar KS Prasad B Suvardhan K Lekkala RB Janardhanam K 《Journal of hazardous materials》2008,150(3):582-586
bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 μg L−1. 相似文献
9.
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL−1 Pb(II). The adsorption capacity of the solid phase was 0.20 mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97–104% by the proposed method. 相似文献
10.
In this study, in order to eliminate the drawbacks of elution step and to reach higher enrichment factors, a novel preconcentration/separation technique for the slurry analysis of sorbent loaded with lead prior to its determination by electrothermal atomic absorption spectrometry was described. For this purpose, at first, lead was collected on ethylene glycol dimethacrylate methacrylic acid copolymer (EGDMA-MA) treated with ammonium pyrolidine dithiocarbamate (APDC) by conventional batch technique. After separation of liquid phase, slurry of the sorbent was prepared and directly pipetted into graphite furnace of atomic absorption spectrophotometer. Optimum conditions for quantitative sorption and preparation of the slurry were investigated. A 100-fold enrichment factor could be easily reached.
The analyte element in certified sea-water and Bovine-liver samples was determined in the range of 95% confidence level. The proposed technique was fast and simple and the risks of contamination and analyte loss were low. Detection limit (3δ) for Pb was 1.67 μg l−1. 相似文献
11.
One of the limitations in previous flow injection (FI) sorption preconcentration procedures in a knotted reactor (KR), which have been carried out exclusively with a single continuous sample injection over a certain period, is the relatively low retention efficiency (typically 40-50%). Although the sensitivity of such systems could be improved by properly increasing sample preconcentration time, sample loading flow rate, or both, further improvement of the sensitivity has been limited by the narrow linearity of the relationship between signal intensity and preconcentration time or sample loading time. In this work, a novel on-line FI multiplexed sorption preconcentration procedure with repetitive sample injections was developed to overcome the above problems in the previous systems. In contrast to previous FI preconcentration systems, the proposed multiplexed preconcentration procedure evenly divides a single longer sample injection step into several shorter substeps while the total preconcentration time is still kept constant. To demonstrate its merits, the proposed FI on-line KR multiplexed sorption preconcentration system was combined with flame atomic absorption spectrometry (FAAS) for determination of trace lead in water, tea, and herb medicines. The lead in the sample solution on-line reacted with ammonium pyrrolidine dithiocarbamate, and the resultant analyte complex was sorbed on the inner walls of the KR. The residual sample solution was then removed from the KR with an air flow. The above two steps were repeated eight times with a total preconcentration time of 120 s. The sorbed analyte was eluted from the KR with 4.5 mol L(-1) HCl for on-line FAAS detection. The present multiplexed preconcentration procedure with eight repetitive sample injections for a total preconcentration time of 120 s gave a retention efficiency of 92%, twice that obtained by one single sample injection preconcentration (47%). In addition, the linear ranges of the diagrams of absorbance against sample loading flow rate and sample loading time were extended, offering more potential for achieving high sensitivity by increasing sample loading rates or sample loading time compared to the previous one single continuous sample injection preconcentration procedure. At a sample loading flow rate of 3.6 mL min(-1) for a total preconcentration period of 120 s, an enhancement factor of 57 and a detection limit (3sigma) of 8 microg L(-1) were obtained. The precision was 1.4% (RSD, n = 11) at the 200 microg L(-1) level. The developed method was successfully applied to the determination of trace lead in various water samples, herb medicines, and a certified tea reference material. 相似文献
12.
《Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment》1988,271(2):321-323
The concentration of thallium was determined in samples from the Allchar deposit by flame and flameless atomic absorption spectrometry. Interferences of various elements were investigated. A concentration of 10–2000 ppm was found in samples from Allchar ore. 相似文献
13.
Mahboubeh Shirani Bidabadi Shayessteh DadfarniaAli Mohammad Haji Shabani 《Journal of hazardous materials》2009
Solidified floating organic drop microextraction (SFODME), combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for simultaneous separation/enrichment and determination of trace amounts of nickel and cobalt in surface waters and sea water. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. The main parameters affecting the performance of SFODME, such as pH, concentration of PAN, extraction time, stirring rate, extraction temperature, sample volume and nature of the solvent were optimized. Under the optimum experimental conditions, a good relative standard deviation for six determination of 20 ng l−1 of Co(II) and Ni(II) were 4.6 and 3.6%, respectively. An enrichment factor of 502 and 497 and detection limits of 0.4 and 0.3 ng l−1 for cobalt and nickel were obtained, respectively. The procedure was applied to tap water, well water, river water and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments. 相似文献
14.
Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry 总被引:1,自引:0,他引:1
A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the formation of metal complexes by 4,6-dihydroxy-2-mercaptopyrimidine (DHMP) loaded on activated carbon. The metals content on the complexes are then eluted using 5 mL 2M HNO(3) in acetone, which are detected by AAS at resonance line. In this procedure, minerals such as Cu, Ni, Pb and Co could be analyzed in one run by caring out the simultaneous separation and quantification of them. At optimum condition the response are linear over concentration range of 0.04-1.1 microg mL(-1) for Ni(2+) and 0.04-1.0 microg mL(-1) for Cu(2+), Pb(2+) and Co(2+). The detection limits of each element are expressed as the amount of analytes in ng mL(-1) giving a signal to noise ratio of 3 are equal to 3.5, 3.4, 2.9 and 8.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The sorption capacity was determined by saturating 0.5 g solid phase. The loading capacity are 0.54, 0.53, 0.63 and 0.45 mg g(-1) for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The ability of method for repeatable recovery of trace ion are 99.0, 98.9, 99.2 and 98.8 with R.S.D. of 1.4, 1.3, 1.2 and 1.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The low detection limits of these elements in this technique make it a superior alternative to UV-vis and in several applications, also an alternative to ICP-MS techniques. The method has been successfully applied for these metals content evaluation in some real samples including natural water, leaves of spinach and cow liver. 相似文献
15.
A method has been developed for the speciation of trace dissolved Fe(II) and Fe(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry (ICPMS). Selective determination of Fe(III) in the presence of Fe(II) was made possible by on-line formation and sorption of the Fe(III)-pyrrolidinecarbodithioate (PDC) complex in a PTFE knotted reactor over a sample acidity range of 0.07-0.4 mol L(-1) HCl, elution with 1 mol L(-1) HNO3, and detection by ICPMS. Over a sample acidity range of 0.001-0.004 mol L(-1) HCl, the sum of Fe(III) and Fe(II), i.e., Fe(III + II), could be determined without the need for preoxidation of Fe(II) to Fe(III). The concentration of Fe(II) was obtained as the difference between those of Fe(III + II) and Fe(III). With a sample flow rate of 5 mL min(-1) and a 30-s preconcentration time, an enhancement factor of 12, a retention efficiency of 80%, and a detection limit (3s) of 0.08 microg L(-1) were obtained at a sampling frequency of 21 samples h(-1). The relative standard deviation (n = 11) was 2.9% at the 10 microg L(-1) Fe(III) level. Recoveries of spiked Fe(III) and Fe(II) in local tap water, river water, and groundwater samples ranged from 95% to 103%. The concentrations of Fe(III) and Fe(II) in synthetic aqueous mixtures obtained by the proposed method were in good agreement with the spiked values. The result for total iron concentration in the river water reference material SLRS-3 was in good agreement with the certified value. The method was successfully applied to the determination of trace dissolved Fe(III) and Fe(II) in local tap water, river water, and groundwater samples. 相似文献
16.
17.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a fuel additive that has been marketed for use in unleaded gasoline since December 1995. The widespread use of this additive has been suggested to cause health risks, but limitations in data regarding its degradation products and their toxicity prevent an accurate evaluation. To monitor the organomanganese compounds, it is clearly advantageous to employ low-cost, high-sensitivity, manganese-specific instrumentation to perform speciation. In this work, instrumentation fitting these criteria was obtained by the combination of high-performance liquid chromatography (HPLC) with diode laser atomic absorption spectrometry (DLAAS) and was used to determine MMT, its nonmethylated derivative, cyclopentadienyl manganese tricarbonyl (CMT), and inorganic manganese. DLAAS was shown to be a versatile analytical technique for total Mn determination, with a detection limit of 1 ng/mL and a linear dynamic range (LDR) of almost 5 orders of magnitude. Analytical figures of merit for HPLC-DLAAS included a detection limit of 2 ng(as Mn)/mL, a LDR of 3 orders of magnitude, and an analysis time of three minutes. The organometallic compounds are characterized by rapid photolysis in sunlight, and hence, experiments were performed to evaluate whether normal laboratory lighting is suitable for their determination. Our results showed that normal laboratory protocols may be employed except that the organomanganese compounds should be stored away from light except during sample introduction procedures. The ability of the instrumentation to selectively preconcentrate organomanganese compounds while removing inorganic manganese was demonstrated. Sufficient resolution was obtained to determine a 20-fold excess of CMT compared with MMT. The ability of the system to do practical analysis was demonstrated by the accurate determination of MMT in spiked samples of gasoline, human urine, and tap water. These results demonstrate the suitability of HPLC-DLAAS for the speciation of MMT and its derivatives in industrial, toxicological, and environmental samples. 相似文献
18.
In the present work, an efficient microextraction method was applied to separation and preconcentration of Ni(II), Co(II), Pb(II) and Cr(III). This method is dispersive liquid-liquid microextraction based on solidification of floating organic drop, which overcomes the most important problems of each aforementioned technique. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent type and its volume, concentration of chelating agent, salt effect and extraction time on the quantitative recoveries of nickel, cobalt, lead and chromium ions were investigated. Under the optimized conditions, the limits of detection were 0.2 ng L(-1) for Cr and 1.3 ng L(-1) for Co, Ni and Pb, with a preconcentration factor of 800 times. The relative standard deviations of 6.2% at 6.0 ng L(-1) of Cr and 7.2% at 10 ng L(-1) of Co, Ni and Pb were obtained (n=7). The proposed method was successfully applied for the analysis of ultra trace metals in water and wastewater samples. 相似文献
19.
Tuzen M Soylak M Citak D Ferreira HS Korn MG Bezerra MA 《Journal of hazardous materials》2009,162(2-3):1041-1045
A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish. 相似文献
20.
In this work the third generation of flow injection analysis, that is, the so-called micro-lab-on-valve (microLOV) approach, is proposed for the first time for the separation, preconcentration, and monitoring of metalloids as hyphenated with atomic fluorescence spectrometry (AFS). This was made feasible by interfacing the micromachined LOV-module with AFS by a multisyringe flowing stream network for on-line postcolumn derivatization of the eluate aimed at generation of hydride species. The potential of this new hyphenated technique for environmental assays was ascertained via determination of ultratrace level concentrations of total inorganic arsenic in freshwater. Employing quantitative preoxidation of As(III) to As(V) in the samples by means of permanganate, the method involves preconcentration of arsenate at pH 10 on a renewable anion exchanger, namely, Q-Sepharose, packed in a LOV microcolumn. The analyte species is afterward stripped out and concurrently prereduced by a 300 microL eluent plug containing 6 mol L(-)1 HCl and 10% KI. The eluate is downstream merged with a metered volume of sodium tetrahydroborate (0.3% w/v) for generation of arsine, which is subsequently quantified by AFS. The flow system facilitates on-column reduction of the retained arsenic with no need for application of programmable stopped flow. Yet, the high concentration of reductant and extreme pH conditions for elution hinder the sorbent to be reused due to gradual deactivation of the functional moieties, so that maximum benefit can be taken from the application of the bead renewable strategy. The proposed procedure is characterized by a high tolerance to metal species and interfering hydride-forming elements. In fact, ratios of Se(IV) to As < or = 5000 and Sb(V) to As < or = 500 are tolerated at the 10% interference level. Under the optimized experimental conditions, a detection limit (3sigma) of 0.02 ng mL(-1) As, a dynamic linear range of 0.05-2.0 ng mL(-1) As (by tailoring the AFS gain), an enrichment factor of 8.8 for arsenate, and a precision better than 6.0% at the 0.1 ng mL-1 level were obtained for the bead-injection mode whenever the loading sample volume was affixed at 3.0 mL. The reliability and accuracy of the automated procedure was ascertained by determining total inorganic arsenic in both spiked environmental waters and certified reference materials of variable matrix complexity (TMDA-54.3 and ERM-CA010) at the low ng mL(-1) level. No significant differences were found between the experimental results and the certified values at a significance level of 0.05. 相似文献