首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A compact high-current pulse generator with the amplitude of the load current up to 140 kA and rise time below 200 ns is designed. The basic element of the pulse generator design is the HCEIcap 100–0.2 capacitor switch assembly. The capacitance value of the capacitor switch assembly is 200 nF, the charging voltage is 100 kV, the energy storage is 1000 J, and the full inductance value is 20 nH. The sizes of the active part of the capacitor are 80-mm inner diameter ×160-mm outer diameter ×160 mm. A multigap spark-gap is used as a switch. The rise rate of the current through the load (X-pinch, 2 molybdenum wires with a 25-μm diameter) is 1.3 kA/ns, and the soft X-ray pulse duration is 2.0–3.5 ns.  相似文献   

2.
A generator of high-voltage pulses of nanosecond duration with a subnanosecond rise time is described. The generator contains a nanosecond-pulse shaper based on an assembly of drift step-recovery diodes (DSRDs) connected in series and a sharpening switch based on an assembly of deep-level dynistors (DLDs) connected in series. The results of tests of this generator at a pulse repetition rate of 100 Hz are presented. Voltage pulses with an amplitude of 20 kV, a rise time of 0.3 ns, and a duration of 10 ns are formed across a load with a resistance of 50 Ω.  相似文献   

3.
A generator with a voltage inversion across storage capacitors and output pulse amplitude doubling at the load without increasing the number of stages and raising the supply voltage is described. IGBT transistors are used as switches. The special feature of the circuit design of the generator is the replacement of charging resistors by charging diodes and connection of the supply voltage through an inductor. Functional and experimental diagrams and measurement results are given.  相似文献   

4.
Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.  相似文献   

5.
A small-size high-voltage (~20 kV) microsecond pulse generator, which is based on a pulse transformer and loaded into a reactor with a pulse corona discharge, is described. Insulated-gate bipolar transistors (IGBTs) that form the switch are used in the low-voltage circuit of the generator. When the switch is open, voltage pulses with an amplitude of up to 1000 V are created across it and, hence, across the primary winding of the transformer. The pulse repetition rate of the generator is ~20000 pulses/s.  相似文献   

6.
A scalable square high voltage pulse generator, which has the properties of fast rise time, fast fall time, powerful driving capability, and long lifetime, is presented in this paper by utilizing solid state circuitry. A totem-pole topology is designed to supply a powerful driving capability for the electro-optic (EO) crystal which is of capacitive load. Power MOSFETs are configured in series to sustain high voltage, and proper driving circuits are introduced for the specific MOSFETs configurations. A 3000 V pulse generator with ~49.04 ns rise time and ~10.40 ns fall time of the output waveform is presented. This kind of generator is desirable for electro-optic switch. However, it is not specific to EO switch and may have broad applications where high voltage fast switching is required.  相似文献   

7.
Results of the development and study of a 14-stage air high-voltage pulse generator with an output voltage of up to 250 kV, a current rise time of 10 ns, and blow capacitance of 400 pF are presented. The design and the schematic circuit diagram of the generator are described.  相似文献   

8.
A high-power nanosecond pulse generator based on a Lewis transformer and ultrafast IGBT-transistors is described. The generator ensures the formation of square pulses at a 50-Ω matched load with a repetition rate of up to 2 kHz. The pulse duration may be freely varied from 20 to 200 ns, and the pulse power may vary from 200 W to 2 MW.  相似文献   

9.
COBRA is a 0.5 Omega pulse generator driving loads of order 10 nH inductance to >1 MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95 to 230 ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.  相似文献   

10.
A circuit diagram and design of the arbitrary-shape bipolar voltage pulse generator with amplitudes up to 800 V and a peak output on a matched load of 400 kW are described. The generator is based on car rechargeable batteries and power insulated-gate bipolar transistors (IGBTs). Results of the experiments aimed at producing high-power harmonic signals with frequencies of 50 Hz and 1 kHz are presented.  相似文献   

11.
Two modifications of the compact subnanosecond high-voltage bipolar pulse generator with an active unit based on a high-impedance charging line, forming line, and two uncontrolled nitrogen spark gaps without gas purging are studied. In both cases, the forming lines are charged with compression of the energies of incident pulses with a ∼160-kV amplitude, a ∼4-ns duration, and a ∼1.5-ns leading edge. The difference of operation modes of the circuits and their efficiency are specified by a point of connecting the load. In conditions of nanosecond prebreakdown overvoltage at a 100-Hz repetition rate, the spark gaps were energized with a relative scatter of ±(100–170) ps, thus specifying the stability of the shape of output bipolar pulses with a voltage difference up to 250 kV.  相似文献   

12.
A generator of nanosecond pulses with an energy of ~50 mJ, which provides switching of voltage pulses with an amplitude of ~17 kV and a rise time of ~4 ns at a repetition frequency of 8 kHz to a 75-Ω resistive load, is described. The load is matched to the generator output cable. The generator is based on an opening switch in the form of a unit of drift step-recovery diodes (DSRDs). The conditions for the efficient operation of DSRDs are provided by six self-contained modules each of which contains an IGBT transistor and a step-up saturable-core transformer. The results of an experimental study of the generator are presented. They indicate a high efficiency of the developed modular circuit, which makes it possible to increase the switched energy virtually in proportion to the number of used modules, and the possibility of reducing the switching energy loss in the DSRD unit in proportion to the number of diode assemblies connected in parallel. It is shown that the generator can be used for producing ozone and high-purity silicon tetrafluoride and also in an apparatus for purifying air of organic pollutants.  相似文献   

13.
One of the specific features of the barrier electric discharge is the short duration of microdischarge processes that last about tens of nanoseconds. A high-voltage nanosecond pulse generator based on a barrier electric discharge is presented. A voltage of tens of kilovolts is usually applied to electrodes of the discharge cell. The peak values of the current pulse may be very high (from a few amperes to several tens of amperes). The presented high-voltage nanosecond pulse generator, having a sufficiently simple design, ensures quite good pulse repetition stability, and, when necessary, allows one to easily tune characteristics of pulses and their repetition rates by changing the geometrical, electrical, and physical-chemical parameters of the setup.  相似文献   

14.
In this paper, a ramp generator with programmable slope is presented. It consists of a high voltage step generator, followed by integrator. The capacitor and inductor in the integrator are designed such that they can be varied by a microcontroller. This circuit generates two bipolar ramps with fastest speed <1 ns and provides continuous speed variation from 6 to 30 ns for a ramp of 500 V. This is being developed as a part of automated streak camera for deflection of electron beam.  相似文献   

15.
A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1 kV across a 100 Omega load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60 ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.  相似文献   

16.
A compact generator with a semiconductor opening switch (SOS-diode) shaping across resistive load pulses with an amplitude of up to 300 kV, duration of 30–50 ns, and a 300-Hz pulse repetition under uninterrupted operation and up to 2 kHz in a 30-s burst mode is described. The generator contains a thyristor charging device, magnetic compressor, and inductive storage with a semiconductor opening swith based on SOS-diodes. The average output power at a maximum pulse repetition rate and a 250kV-voltage is 16 kW. The overall dimensions of the generator are 0.85×0.65×0.42 m, the weight is about 115 kg.  相似文献   

17.
The results of studies of new fast-acting semiconductor devices—deep-level dynistors intended for use in high-power devices of nano-and microsecond pulsed-power technology—are presented. The possibility of switching multikiloampere current pulses having a rise rate of 200 kA/μs with the use of a single device with a 12-mm-diameter structure is shown. A high-power switch based on an assembly of dynistors with an operating voltage of 12 kV connected in series is described. The switch is capable of switching current pulses with a 1200-A amplitude and a 4-ns rise time.  相似文献   

18.
A high-voltage nanosecond pulse generator intended for studying diffuse discharges in gases at pressures close or equal to atmospheric pressure is described. The generator produces pulses with an ∼50-ns (at half-height) duration, a >50-kV voltage amplitude, a 10- to 12-ns rise time, and a pulse repetition rate of up to 1 kHz across an equivalent load (1.3 kΩ, 15 pF). The generator is based on available cheap components, and the amplitude (energy) of output pulses and their repetition rate can be promptly regulated in a wide range. The generator is immune to noise and reliable.  相似文献   

19.
A trapezoidal pulse generator with independent adjustments of slopes of leading and trailing edges of pulses and their amplitudes is described. The circuit can also operate as a continuous triangle-pulse generator. The maximal pulse rise rate is 1 V/μs, when the maximal pulse amplitude is 5 V.  相似文献   

20.
In this paper, a novel repetitive frequency voltage booster (named repetitive Fitch booster by the authors) based on magnetic switches and Fitch generators is proposed. The principle of operation is to charge capacitors in parallel when magnetic switches (MSs) are unsaturated and reverse voltage polarity of every other capacitor when MSs saturate. With the principle, circuit topology of a 4-stage repetitive Fitch booster (RFB) is presented. Simulation as well as experiment shows its feasibility in boosting voltage and compressing rise-time. In simulation, the input voltage of 100 V is boosted to 372 V, while test stand yields output voltage with frequency of 1 kHz, amplitude of 19 kV with each capacitor charged to about 5.6 kV, and rise-time compression from 7.3 μs to 700 ns. Meanwhile, calculations show that the 4-stage RFB effectively reduces core volume by about half, from 1093.5 cm(3) to 585.2 cm(3). Furthermore, design rules are proposed so that topologies of RFBs with stages other than four can be conveniently derived. As an example, an 8-stage RFB is proposed and verified with circuit simulation, which shows an output voltage of 759 V with the input voltage of 100 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号