首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2003,51(15):4379-4394
Cold gas spraying is a relatively new coating process by which coatings can be produced without significant heating of the sprayed powder. In contrast to the well-known thermal spray processes such as flame, arc, and plasma spraying, in cold spraying there is no melting of particles prior to impact on the substrate. The adhesion of particles in this process is due solely to their kinetic energy upon impact. Experimental investigations show that successful bonding is achieved only above a critical particle velocity, whose value depends on the temperature and the thermomechanical properties of the sprayed material. This paper supplies a hypothesis for the bonding of particles in cold gas spraying, by making use of numerical modelling of the deformation during particle impact. The results of modelling are assessed with respect to the experimentally evaluated critical velocities, impact morphologies and strengths of coatings. The analysis demonstrates that bonding can be attributed to adiabatic shear instabilities which occur at the particle surface at or beyond the critical velocity. On the basis of this criterion, critical velocities can be predicted and used to optimise process parameters for various materials.  相似文献   

2.
3.
许耀飞  刘思思  杨正航  姜胜强  刘金刚 《表面技术》2023,52(10):321-334, 359
目的 考虑后续不同粒径颗粒随机冲击的影响,探索热喷涂涂层颗粒的沉积特性。方法 利用ABAQUS建立颗粒与基底冲击模型,通过颗粒冲击的凹坑深度和应力分布进行网格收敛性研究。通过实验验证模型的可行性。随后,应用验证模型研究颗粒以不同入射角和速度冲击基底时的沉积特性,以及4个颗粒重叠冲击基底及多颗粒随机冲击基底表面时的沉积特性。结果 在颗粒入射角从15°增至60°时,颗粒更好地附着于基底表面;当颗粒速度从350 m/s增至500 m/s时发生了溅射现象,可能造成绝热剪切失稳现象,形成有效结合;在4个颗粒冲击基底时,第2个颗粒对第1个颗粒及基底的影响都最明显;当多颗粒随机冲击基底时,在后续颗粒的冲击和沉积作用下,填充颗粒的形状不规则,同时第1层颗粒可能与基底形成机械咬合。结论 在超音速火焰喷涂时应当倾斜一定角度,同时提升颗粒速度,这对制备涂层更有利;在颗粒重叠冲击时,后续颗粒增大了第1个颗粒的压缩效果,且更深入地嵌入不锈钢基底,这有利于颗粒与颗粒之间的后续黏结;当多颗粒随机冲击基底时,在第1层沉积颗粒与基底之间,以及涂层内相邻颗粒之间均观察到高塑性应变,表明涂层出现黏结,同时后期沉积的颗粒未完整压缩变形。  相似文献   

4.
This work presents an in situ monitoring of HVOF thermal spraying process through an acoustic emission (AE) technique in an industrial coating chamber. Single layer thermal spraying on substrate was carried out through slits. Continuous multilayer thermal spraying onto the sample without slit was also conducted. The AE was measured using a broadband piezoelectric AE sensor positioned on the back of the substrate. A mathematical model has been developed to determine the total kinetic energy of particles impacting the substrate through slits. Results of this work demonstrate that AE associated with particle impacts can be used for in situ monitoring of coating process. Results also show that the amplitude and AE energy is related to the spray gun transverse speed and the oxy-fuel pressure. The measured AE energy was found to vary with the number of particles impacting the substrate, determined using the mathematical model.  相似文献   

5.
6.
低温超音速喷涂团聚铁粒子沉积的SPH模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
侯根良  许欣  袁晓静 《焊接学报》2009,30(5):105-108
为了研究纳米团聚粒子形态对涂层特性的影响,应用SPH方法研究了低温超音速火焰喷涂金属团聚粒子的沉积行为.结果表明,纳米粒子团聚为微米级粒子后,基体碰撞出现了飞溅现象,应变变化明显.团聚粒子的等效塑性应变小于普通微米粒子,但团聚粒子的面积扩大比大于普通微米粒子.沉积过程中,当超过临界沉积速度后,金属团聚粒子与基体之间存在过渡区域,过渡区域随粒子速度的增加而扩大.  相似文献   

7.
Warm spraying has been developed by NIMS, in which powder particles are accelerated and simultaneously heated, and deposited onto a suitable substrate in thermally softened solid state. In this study, commercially available titanium powder was sprayed onto steel substrate by the spraying process. Microstructural developments and deposition behaviors from a deposited single particle to a thick coating layer were observed by high resolution electron microscopes. A single titanium particle sprayed onto the substrate was severely deformed and grain-refined mainly along the interfacial boundary of particle/substrate by the impact of the sprayed particle. A successive impact by another particle further deformed the previously deposited particle and induced additional grain refinement of the remaining part. In a thick coating layer, the severe deformation and grain refinement were also observed. The results have demonstrated the complex deposition behavior of sprayed particles in the warm spraying using thermally softened metallic powder particles.  相似文献   

8.
The limited deformation of hard cermet particles and impacted coating makes it difficult for conventional thermal spray powders to continuously build up on impact in cold spraying. In this study, three nanostructured WC-12Co powders with different porous structure and apparent hardness were employed to deposit WC-Co coatings on stainless steel substrate by cold spraying. The deposition characteristics of three powders of porosity from 44 to 5% were investigated. It was found that WC-Co coating is easily built-up using porous powders with WC particles bonded loosely and a low hardness. The microhardness of WC-12Co coatings varied from 400 to 1790 Hv with powders and spray conditions, which depends on the densification effects by impacting particles. With porous WC-Co powders, the fracture of particles on impact may occur and low deposition efficiency during cold spraying. The successful building up of coating at high deposition efficiency depends on the design of powder porous structure.  相似文献   

9.
中国冷喷涂研究进展   总被引:18,自引:1,他引:17  
冷喷涂是通过高速固态颗粒依次与固态基体碰撞后、经过适当的变形牢固结合在基体表面而依次沉积形成沉积层的方法.其关键技术是控制不同材料粒子的速度超过其相应的临界速度.文中总结了中国冷喷涂研究的进展.10年来,中国对冷喷涂的研究有了长足进展,发表的论文数量从2000年1篇增加到2007年的28篇.在冷喷涂设备系统研究的基础上,研究工作的基本方法包括数值模拟和试验研究两个方面.当前中国冷喷涂涂层沉积研究基本处于国际前沿,实现了多种金属合金材料、金属间化合物、金属陶瓷与陶瓷涂层的沉积.涂层不仅可以用作保护涂层,还可以用作功能涂层,具有钎料功能的涂层可以通过冷喷涂预制钎料而为钎焊作准备,关于涂层的结合、涂层内颗粒之间的结合、涂层沉积过程规律与组织结构的控制等相关的基础研究还有待于深入开展.  相似文献   

10.
《Acta Materialia》2007,55(15):5089-5101
The application of thick thermally sprayed coatings on metallic parts has been widely accepted as a solution to improve their corrosion and wear resistance. Key attributes of these coatings, such as adherence to the substrate, are strongly influenced by the residual stresses generated during the coating deposition process. In high-velocity oxy-fuel (HVOF) thermal spraying, due to the relatively low temperature of the particle, significant peening stresses are generated during the impact of molten and semi-molten particles on the substrate. Whilst models exist for residual stress generation in plasma-based thermal spray processes, finite element (FE) prediction of residual stress generation for the HVOF process has not been possible due to the increased complexities associated with modelling the particle impact. A hybrid non-linear explicit–implicit FE methodology is developed here to study the thermomechanical processes associated with particle impingement and layer deposition. Attention is focused on the prediction of residual stresses for an SS 316 HVOF sprayed coating on an SS 316 substrate.  相似文献   

11.
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.  相似文献   

12.
The present study investigated the influence of grit blasting, feedstock powder, and thermal spraying technology on performance near the surface on the substrate’s side. The experimental results show that both the grit-blasting process and thermal spraying process harden the substrate, and microhardness on or near the surface was noticeably increased. Grit blasting created deformed regions next to the surface of the substrate and interface between entrapped grits and substrate. Initial equiaxed grains in the deformed regions were elongated and spirally oriented surrounding impact spots. There were no visible changes in microstructure caused by thermal spraying, and the elongated grain regions remained in the coated substrate. Substrate hardening was attributed to grit blasting and associated heating due to flame rather than powder particle impacting during thermal spraying, thus feedstock powder and individual thermal spray technology had no influence on the hardening.  相似文献   

13.
电爆喷涂是一种新兴的热喷涂方法,它是利用高电压对喷涂材料脉冲放电,瞬时大电流将其加热并发生爆炸,产生高温粒子伴随冲击波喷射到基体表面形成涂层。其特点是喷射粒子速度高,设备尺寸小,适用于孔腔内壁喷涂。本文综述了电爆喷涂方法的发展现状,其经历了自由、定向和约束电爆喷涂。自由喷涂的电极直接接触,烧损严重,并对管径有限制,仅用于小直径管/孔内壁;定向喷涂的约束腔常用陶瓷材料,在爆炸冲击时易破裂或烧蚀;约束喷涂采用消融材料制作约束腔,气体放电导入电流,使这些问题得以解决。其次,阐述了该方法制备的涂层特性,即涂层与基体呈冶金结合,形成了超细晶、纳米晶结构的致密涂层,且具有良好的耐磨和抗腐蚀性及较高的硬度;给出了过程参数与涂层的关系,能量密度和喷涂距离是影响涂层性能的主要因素。最后分析了将来需要研究的问题,展望了电爆喷涂方法的发展趋势。  相似文献   

14.
《Acta Materialia》2008,56(17):4858-4868
In this study, different engineering materials are classified into four impact cases according to their physical and mechanical properties, i.e., soft/soft, hard/hard, soft/hard, and hard/soft (particle/substrate). Based on finite-element modeling, impact behaviors of the four cases were numerically analyzed. For soft/soft and hard/hard cases, the size variation of the thermal boost-up zone (TBZ), accompanied with the different aspects of adiabatic shear instability, was numerically estimated and is theoretically discussed. Meanwhile, for soft/hard and hard/soft cases, the specific aspect of shear instability, which has a very high heat-up rate, is always observed on the relatively soft impact counterpart where a thin molten layer is expected as well. Based on these phenomenological characteristics, bonding aspects are characterized, and a database for numerically estimated critical velocities of different particle/substrate combinations was developed for kinetic spraying process.  相似文献   

15.
Diamond-Cu composites have been considered to be the next generation of electronic packing materials. One of the key stumbles for such an application is the joining problem between diamond-Cu composites and other materials due to the poor wettability of the diamond particles in the composites. In order to overcome this hurdle, pure Cu powder was thermally sprayed onto diamond-Cu substrate by low-temperature high-velocity oxygen fuel spraying process. Microstructure and some fundamental properties of the coating obtained were systematically investigated, and morphologies of the single splat deposited on the diamond-Cu substrate were also observed. The splats obtained have good adhesion with the substrate as fine particles flattened sufficiently, while the coarse particles were significantly deformed. The coating was quite dense with porosity lower than 1%, oxygen content under 0.5% and thermal conductivity about 266 Wm?1 K?1 and still remained on the diamond-Cu substrate after 50 thermal shock cycles between 300 °C and water bath at room temperature. Meanwhile, the solderability of the coating was significantly improved. Therefore, Cu coating deposited on diamond-Cu substrate by low-temperature high-velocity oxygen fuel spraying process can be beneficial in electronic industry assisting with soldering and improved wettability for joining of other materials.  相似文献   

16.
Titanium dioxide (TiO2) coatings have potential applications in biomedical implants or as photo-catalytic functional systems. Cold spraying is a well-established method for metal on metal coatings. In cold spraying, the required heat for bonding is provided by plastic deformation of the impacting ductile particles. In contrast, few authors have investigated the impact phenomena and layer formation process for spraying brittle ceramic materials on ductile metal surfaces. In this study, the formation of TiO2 coatings on aluminum, copper, titanium, and steel substrates was investigated by SEM, TEM, XRD, and Raman spectroscopy. The results show that the deposition efficiency depends on spray temperature, powder properties, and in particular on substrate ductility, even for impact of ceramic particles during a second pass over already coated areas. Ceramic particles bond to metallic substrates showing evidence of shear instabilities. High-resolution TEM images revealed no crystal growth or phase transitions at the ceramic/metal interfaces.  相似文献   

17.
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s?1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.  相似文献   

18.
Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick (from 20 to 100 µm) nano- or sub-micron structured coatings exhibit better properties than conventional micron structured ones (e.g. higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, in particular for energy production, energy saving, diffusion and environmental barriers, etc.Suspension plasma spraying (SPS) permits to manufacture such finely-structured layers and consists in mechanically injecting within the plasma flow a liquid suspension of sub-micrometric-sized or nano-sized particles through an injector of diameter of the order of one hundred micrometers. Upon penetration within the DC plasma jet, two phenomena occur sequentially: droplet fragmentation and then solvent evaporation. Particles are then processed by the plasma flow (heat and momentum transfers) prior to their impact, flattening and solidification upon the surface to be covered.Compared to plasma spraying of micrometer-sized particles (APS), SPS exhibit several major differences : i) a more pronounced sensitivity to electric are root fluctuation requiring to operate the spray gun in a relatively stable mode (take over) unless to process inhomogeneously the suspension which would results in heterogeneous coating structure; ii) a shorter spray distance (since small particles decelerate faster than bigger ones) leading to higher thermal flux transmitted from the plasma flow to the substrate (5 to 10 times higher than conventional plasma spraying); iii) an emphasized thermophoresis effect; iv) a typical cohesive structure made of the stacking of granular and flattened particles with low density of stacking defects.This paper aims at presenting recent developments carried-out on this process in terms of process optimization and coating manufacturing mechanisms.  相似文献   

19.
This paper reports recent research on abradable materials employed for aero-engine applications. Such thermal spray coatings are used extensively within the gas turbine, applied to the inner surface of compressor and turbine shroud sections, coating the periphery of the blade rotation path. The function of an abradable seal is to wear preferentially when rotating blades come into contact with it, while minimizing over-tip clearance and improving the efficiency of the engine. Thermal spraying of an abradable coating onto a substrate imparts two components of residual stress; rapid quenching stresses as the spray material cools on impact and stresses arising from differential thermal contraction. In-service thermal stresses are superimposed by the differential expansion of these bonded layers. The combination of the production and operation history will lead to thermal-mechanical fatigue damage within the abradable coating. The present paper will describe the numerical modeling and sensitivity analysis of the thermal spray process. The sensitivity of residual stresses (with varying material properties, coating/substrate thickness, Poisson’s ratio, and substrate temperature) predicted by the Tsui and Clyne progressive deposition model enabled identification of performance drivers to coating integrity. Selecting material properties that minimize in-service stresses is a crucial stage in advancing future abradable performance.  相似文献   

20.
Thermal spraying is a material processing technique, which is based on the combination of thermal and kinetic energy. The used feedstock is melted in a hot flame. The melt is atomized and accelerated by means of atomization or process gases. As the formed particles hit a pre-treated substrate they are rapidly solidified and consolidate to form splats. The splats pile one-on-top-of-other forming lamellas creating the final coating. In the work presented here a combination of cored wire (WC as filling powder) and massive wire (copper) were simultaneously sprayed using the twin wire arc spraying process. 3D micro tomography was used in order to gain knowledge about splat formation and layer build-up. Due to the high attenuation coefficient of tungsten in comparison with copper and carbon, tungsten-rich particles and splats can easily be spotted in the tomogram of the coating layer. It turns out that besides irregular formed flat splats also ball-shaped particles exist in the coating layer which suggests that the spherical particles impacted on the substrate in an un-molten state. By 3D data processing tungsten-rich particles were visualized to analyze their spatial distributions and to quantify their geometric parameters. This work aims at contributing to the understanding of spraying processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号