首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
The translocation t(12;22)(p13;q11) has been consistently described in myeloid malignancies and shown to result from a fusion between the TEL and MN1 genes. Previously described deletions of 12p in acute lymphoblastic leukemias have been recently shown to harbor undetected translocations involving the TEL gene at 12p13. We document a case of an aggressive chronic B-cell leukemia whose cells had trisomy 12 and two unbalanced translocations involving 12p13, including a t(12;22)(p13;q11) as shown by conventional cytogenetics and fluorescence in situ hybridization (FISH). The 12p13 breakpoint of the t(12;22)(p13;q11) was telomeric to the TEL gene, and the second unbalanced translocation with breakpoint 12p13 resulted in the deletion of TEL. This case demonstrates that TEL gene deletions may be relevant in cases of mature B-lymphoproliferative diseases.  相似文献   

4.
Translocation (12;21)(p13;q22) is a recently characterized aberration in acute lymphoblastic leukemia, and results in the fusion of the TEL and the AML1 genes. It is the most common translocation in pediatric acute lymphoblastic leukemia (ALL), occurring in about one third of the cases. To determine the frequency of TEL/AML1 in adult ALL, we studied 4 cases of T lineage ALL and 26 cases of B lineage ALL. Only one positive case was identified, giving a very low frequency of 3.3%. In this patient, TEL/AML1 was still detectable in complete hematologic remission. The apparent age predilection of t(12;21) warrants further investigations.  相似文献   

5.
Chromosomal translocations involving the human 12p13 band frequently affect the TEL gene, usually resulting in gene fusion between TEL and genes encoding proteins of various types. The most frequent 12p13 translocation is the t(12;21)(p13;q22), which recombines TEL with the AML1 gene on chromosome 21 and is frequently associated with deletion of the untranslocated TEL allele. Using antisera against different parts of TEL and against the AML1 proteins, we undertook Western blot and immunofluorescence analyses of leukemic samples with and without 12p13 abnormalities. In t(12;21) samples, TEL-AML1 was detected as several protein species in the nuclei, whereas the AML1-TEL protein, was inconsistently expressed. AML1 was found to be expressed but no normal TEL proteins were detected. A survey of the TEL proteins in a panel of human leukemic samples without t(12;21) revealed a variation in the ratio of TEL protein isoforms. We also analysed a leukemic cell line bearing a t(12;22)(p13;q11) that was found to affect the 5' untranslated (UT) region of TEL and to be associated with inactivation of the untranslocated TEL allele. No MN1-TEL fusion could be detected upon RT-PCR analysis, in contrast to the previously investigated t(12;22). Strikingly, extremely low levels of apparently normal TEL proteins, expressed from the translocated allele, were detected by Western blot analysis. These results suggest that the level of TEL expression can be important for leukemogenesis.  相似文献   

6.
7.
The t(12;21)(p13;q22) is the most common translocation in childhood B-precursor ALL. It results in a TEL-AML1 rearrangement and is associated with a good prognosis. Because many chromosomal alterations in leukemia are associated with distinct cell surface phenotypes, we investigated whether there was an association seen between surface marker expression and the TEL-AML1 rearrangement. Of 166 unselected cases of B-precursor ALL studied by Southern hybridization, 45 cases (27%) showed TEL rearrangement. Blasts of patients with TEL rearrangement were much more likely to be CD9-negative, CD45-positive, CD13 positive, and CD20 negative, but the predictive value of any of these markers for the rearrangement was very low. However, 93% of patients with the TEL rearrangement had blasts that were either negative or only partly positive for CD9; this phenotype was only seen in 27% of patients without the rearrangement. Only information about CD20 expression added to the predictive value of CD9 alone. The predictive value of the phenotype CD9 (negative or partly positive) and CD20 (negative or partly positive), for the TEL rearrangement was prospectively tested on an additional 223 cases, and found to be 88% sensitive and 71% specific for the rearrangement, with a positive predictive value of 47%. Hyperdiploidy, previously shown to correlate negatively with the rearrangement, was a slightly more sensitive indicator (94%) but had a much lower predictive value (28%). Three of eight cases found to be rearranged by Southern hybridization but lacking the characteristic phenotype failed to show evidence of the TEL-AML1 rearrangement by polymerase chain reaction, suggesting that at least some of the discordant cases may involve partner genes other than AML1 in the TEL rearrangement. We conclude that immunophenotyping is highly predictive of the TEL rearrangement. For every 100 patients with B-precursor ALL, we estimate that prescreening by phenotyping would eliminate the need for molecular testing on 57 patients and only two or three of an expected 24 patients with the TEL rearrangement would not be detected.  相似文献   

8.
9.
10.
Translocations at chromosomal band 11q23 characterize most de novo acute lymphoblastic leukemias (ALL) of infants, acute myeloid leukemias (AML) of infants and young children, and secondary AMLs following epipodophyllotoxin exposure. The chromosomal breakpoints at 11q23 have been cloned from isolated cases of de novo ALL and AML. Using an 859-base pair BamHI fragment of human ALL-1 complementary DNA that recognizes the genomic breakpoint region for de novo ALL and AML, we investigated two cases of secondary AML that followed etoposide-treated primary B-lineage ALL. In the first case, the translocation occurred between chromosomes 9 and 11 and the breakpoint at 11q23 localized to the same 9-kilobase region of the ALL-1 gene that is disrupted in most of the de novo leukemias. In the second case the translocation was between chromosomes 11 and 19. The breakpoint occurred outside of the ALL-1 breakpoint cluster region.  相似文献   

11.
12.
The less differentiated stage (CD10-) of B-lineage acute lymphoblastic leukaemia (ALL) described as preB1-ALL in the GEIL nomenclature, accounts for less than 10% of ALL. It is classically considered to be associated with translocation (4;11)(q21;q23), and to have a poor prognosis. We report an extensive immunophenotypic, genomic and clinical study of a series of 64 preB-1 ALL patients, representing 6.3% of a cohort of consecutive ALLs. The engagement of preB1-ALL cells in the B-lineage was confirmed by their B-lineage score, equal to or higher than 2. In addition, more than 90% of the cases tested showed rearranged IGH genes. Translocation (4;11) was the most frequent karyotypic anomaly seen, but only accounted for 24% of the preB1-ALL cases tested. Expression of the myeloid associated antigen CD15 was also found with high incidence in this subset. Clinical and biological features at presentation showed more significant differences between preB1- and T-ALL than between preB1- and preB2-ALL (CD10+). However, outcome characteristics of the 22 children with preB1-ALL confirmed the worse prognosis of this entity.  相似文献   

13.
Cytogenetic analysis of a bone marrow aspirate from a patient with acute lymphoblastic leukemia (ALL) revealed the presence of a complex karyotype containing the translocation, t(14;18)(q32;q21). Further investigations using fluorescence in situ hybridization (FISH) allowed the characterization of an additional translocation, t(8;9)(q24;p1?). The association of t(14;18)(q32;q21) and t(8;9)(q24;p13) has recently been described in two patients with de novo ALL (Nacheva et al. Blood 1993;82:231-240) and this report supports these findings.  相似文献   

14.
Phenotypic conversion from acute myeloid leukemia (AML) to acute lymphoblastic leukemia (ALL) is rare. A 38-year-old man was initially diagnosed as having AML (FAB-M2) associated with the t(8;21)(q22;q22) chromosomal abnormality. The blasts showed myeloperoxidase (MPO) activity and CD13 antigen expression. He showed complete remission after standard chemotherapy for AML. However, the patient relapsed with blasts showing ALL morphology (FAB-L1), MPO negativity, and CD19 antigen expression 33 months after cessation of AML therapy. Cytogenetic analysis at relapse was unsuccessful. Molecular analysis of ALL blasts revealed immunoglobulin heavy-chain gene and MLL gene rearrangements but no AML1 gene. MLL gene rearrangement or the 11q23 chromosomal abnormality has been associated with therapy-related leukemia. The subsequent ALL in our patient may have been induced by the chemotherapy including daunorubicin, known as a topoisomerase II inhibitor.  相似文献   

15.
The EU Concerted Action Workshop on 11q23 Abnormalities in Hematological Malignancies collected 550 patients with abnormalities involving 11q23. Of these, 53 patients had a translocation involving chromosome 11, breakpoint q23, and chromosome 19, breakpoint p13. Karyogram review enabled each patient to be further defined as t(11;19)(q23;p13.1) (21 patients) or t(11;19)(q23;p13.3) (32 patients). There was a marked difference between the type of banding and the translocation identified: t(11;19)(q23;p13.1) was detected predominantly by R-banding, whereas t(11;19)(q23;p13.3) was detected almost solely by G-banding. Additional change was extremely rare in patients with t(11;19)(q23;p13.1) but occurred in nearly half of the patients with t(11;19)(q23;p13.3). Patients with t(11;19)(q23;p13.1) all had leukemia of a myeloid lineage, mostly acute myeloid leukemia (AML), and were predominantly adult. In contrast patients with t(11;19)(q23;p13.3) had malignancies of both myeloid and lymphoid lineage and were mainly infants less than 1 year old. The survival of both groups of patients was generally poor, over 50% of t(11;19)(q23;p13.1) patients died within 2 years of diagnosis and the median survival of acute lymphoblastic leukemia (ALL) patients with t(11;19)(q23;p13.3) was 17.6 months.  相似文献   

16.
11q23 translocations (t(11q23)) are recurring cytogenetic abnormalities in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia, involving the same gene, ALL1 (or MLL). Mixed lineage antigen expression has been reported in these leukemias, but its frequency and clinical significance are unknown. We immunophenotyped leukemia cells from 19 adult de novo AML patients with t(11q23) by multiparameter flow cytometry. Translocations included t(6;11)(q27;q23), t(9;11)(p22;q23), t(9;11;19)(p22;q23;q13.3), t(2;11)(11;17)(q37;q11q23;q11), t(11;17)(q23;q25), t(11;19)(q23;p13.1), t(11;19)(q23;p13.3) and t(11;22)(q23;q11). FAB types were M4 and M5. The committed stem cell and myeloid antigens HLADr, CD4dim, CD11b, CD13, CD15, CD32, CD33, CD38 and CD64 were each expressed in 80-100% of cases, and the early stem cell and lymphoid antigens CD34, CD56, CD3, CD2 and CD7 in 42, 39, 16, 5 and 5%, respectively. Antigen expression frequencies did not differ from those in 443 adequately karyotyped M4 and M5 cases without t(11q23). Fifteen patients (79%) attained complete remission (CR); median CR duration and survival were 10.0 and 15.1 months. CR duration and survival did not correlate with antigen expression. In particular, patients with t(9;11) survived longer than those with other t(11q23) (median not reached vs 7.6 months; P = 0.048), but antigen expression did not differ in the two groups. Thus frequencies of lymphoid antigen expression are similar in AML with t(11q23) and in other FAB M4 and M5 cases, treatment outcome does not differ in t(11q23) cases with and without lymphoid antigen expression, and better outcome of patients with t(9;11) compared to other t(11q23) does not correlate with differences in antigen expression. Mixed lineage antigen expression is not a distinctive feature of AML with t(11q23).  相似文献   

17.
18.
Gene rearrangements involving MLL (also known as ALL1, HRX, or Htrx) are among the most common molecular abnormalities associated with acute leukemia. These leukemias generally have one allele involved in a rearrangement, while the remaining allele is uninvolved and demonstrates a germline MLL configuration. In this study, we describe a leukemic cell line that does not have a germline MLL allele and thus cannot produce a normal MLL gene product. We show that the ML-1 cell line, derived from a patient with acute myeloid leukemia, has one allele involved in a t(6;11)(q27;q23), while the remaining MLL allele is deleted. Cloning of the genomic breakpoints on the derivative(6) and der(11) chromosomes demonstrated a balanced translocation between MLL on chromosome band 11q23 and AF6 on chromosome band 6q27. Sequence analysis of the derivative chromosomes revealed that a 186-bp segment of MLL intron 6, downstream of the breakpoint, had been duplicated, inverted, and inserted between MLL and AF6 on the der(11) chromosome. In light of the fact that ML-1 cells can be induced to differentiate along the granulocyte and macrophage lineages, the finding that ML-1 lacks a germline MLL allele demonstrates that a normal MLL gene is not required for survival, proliferation, or differentiation of this cell line.  相似文献   

19.
20.
A 49-year-old woman patient with atypical myelodysplastic syndrome (MDS) showing a der(3)t(3;12)(q21;p13), and der(12)t(3;12)(q21;p13)inv(3)(q21q26) as an acquired chromosomal abnormality in the bone marrow is described. The chromosomal breakpoints of the presented complex aberration with combination of the inv(3)(q21q26) and t(3;12)(q21;p13) were defined by fluorescence in situ hybridization (FISH) with yeast artificial chromosomes (YACs). The inv(3) is a relatively frequent chromosomal rearrangement in patients with myeloid malignancies and dysmegakaryopoiesis and t(3;12)(q26;p13) has also been reported as a recurrent abnormality in MDS and in blast crisis of chronic myelogenous leukemia (CML). Whereas the t(3;12), inv(3), and t(3;3) are associated with a very poor prognosis, our patient surprisingly had a mild clinical course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号