首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Although already scientists in recent years have reported some experimental and theoretical results of LaNi-Al series of tritium-storage alloys, several key aspects remain the subject of considerable debate. In an effort to interpret some of these unknowns, we have performed experimental and theoretical investigations for LaNi_(5-x)Al_x(x = 0, 0.25, 0.5, 0.75 and 1.0) tritium-storage alloys. Firstly, the XRD characterization indicates that the unit cell volumes of LaNi_(5-x)Al_x increase with Al content in alloys. Secondly, the PCisotherm measurement of LaNi_(5-x)Al_xalloys shows that their hydrogen absorption/desorption plateau pressures reduce with the increase of Al content while their plateau widths narrow simultaneously. The deuterium absorption/desorption plateaus have a similar trend to hydrogen's except for their plateaus being higher than hydrogen's. To explain the above experimental findings, a series of calculations based on density functional theory(DFT) and frozen phonon approach have been performed. The results manifest that:(1) the partial substitutions of Al for Ni reduce the hydrogen formation energies of LaNi_(5-x)Al_xH and the number of available interstitial sites, and therefore lead to the absorption/desorption plateau pressures being reduced and the plateau widths being narrowed down at the same experimental temperatures;(2) the covalent interaction between H and Ni is an important factor for estimating the stability of LaNi_(5-x)Al_x-H system;(3) since the calculated enthalpy change H is generally more accurate than the calculated entropy change S with respect to the corresponding experimental value for each LaNi_(5-x)Al_xH(or D), the curves of H vs. hydrogen storage capacity instead of Van't Hoff relation, can be used to predict the experimental plateau pressures of LaNi_(5-x)Al_x-H(D or T) at a given temperature;(4) the hydrogen isotope effect of LaNi_(5-x)Al_x-H(D or T) system can be quantitatively described as a linearity relation between ⊿ZPE + ⊿H~(vib) and 1/√mQ(Q = H, D, T). From the good agreement between the predicted and experimental ln(P_H/P_0) and ln(P_D/P_0), it is deduced that predicting ln(P_T/P_0) of LaNi_(5-x)Al_x T is feasible. The procedure of pre-computing and comparing curves of H vs. hydrogen storage capacity proposed in this paper provided an attractive tool to increase the efficiency of experimental alloying design of hydrogen(deuterium or tritium) storage materials.  相似文献   

15.
16.
17.
In the present study, the problem of conjugate natural and mixed convection of nanofluid in a square cavity containing several pairs of hot and cold cylinders is visualized using non-homogenous two-phase Buongiorno's model. Such configuration is considered as a model of heat exchangers in order to prevent the fluids contained in the pipelines from freezing or condensing. Water-based nanofluids with Cu, Al2O3, and TiO2 nanoparticles at different diameters (25nm?dp?145nm) are chosen for investigation. The governing equations together with the specified boundary conditions are solved numerically using the finite volume method based on the SIMPLE algorithm over a wide range of Rayleigh number (104?Ra?107), Richardson number (10-2?Ri?102) and nanoparticle volume fractions (0?φ?5%). Furthermore, the effects of three types of influential factors such as: orientation of conductive wall, thermal conductivity ratio (0.2?Kr?25) and conductive obstacles on the fluid flow and heat transfer rate are also investigated. It is found that the heat transfer rate is significantly enhanced by incrementing Rayleigh number and thermal conductivity ratio. It is also observed that at all Rayleigh numbers, the total Nusselt number rises and then reduces with increasing the nanoparticle volume fractions so that there is an optimal volume fraction of the nanoparticles where the heat transfer rate within the enclosure has a maximum value. Finally, the results reveal that by increasing the thermal conductivity of the nanoparticles and Rayleigh number, distribution of solid particles becomes uniform.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号