首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstrated to detect the elemental distribution in PFCs.In this work,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen(H) retention on a tantalum(Ta) sample under a vacuum condition.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times.The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0-200 ns.The diameter of Ta plasma is about 6 mm which is much less than the size of H plasma after 200 ns.The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta.The depth profile result shows that H retention mainly exists on the surface of the sample.The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission.The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.  相似文献   

2.
In this work,laser induced tungsten plasma has been investigated in the absence and presence of 0.6 T static transverse magnetic field at atmospheric pressure in air.The spectroscopic characterization of laser induced tungsten plasma was experimentally studied using space-resolved emission spectroscopy.The atomic emission lines of tungsten showed a significant enhancement in the presence of a magnetic field,while the ionic emission lines of tungsten presented little change.Temporal variation of the optical emission lines of tungsten indicated that the atomic emission time in the presence of a magnetic field was longer than that in the absence of a magnetic field,while no significant changes occurred for the ionic emission time.The spatial resolution of optical emission lines of tungsten demonstrated that the spatial distribution of atoms and ions were separated.The influence of a magnetic field on the spatial distribution of atoms was remarkable,whereas the spatial distribution of ions was little influenced by the magnetic field.The different behaviors between ions and atoms with and without magnetic field in air were related to the various atomic processes especially the electrons and ions recombination process during the plasma expansion and cooling process.  相似文献   

3.
The influence of a vacuum on the laser-induced breakdown spectroscopy(LIBS) of carbon in the ultraviolet wavelength range is studied.Experiments are performed with graphite using a LIBS system,which consists of a 1064 nm Nd:YAG laser,a vacuum pump,a spectrometer and a vacuum chamber.The vacuum varies from 10 Pa to 1 atm.Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums.A temporal evolution analysis of intensity is performed for the atomic lines of C Ⅰ 193.09 nm and C Ⅰ 247.86 nm under different vacuum conditions.Both time-integrated and time-resolved intensity evolutions under vacuums are achieved.The lifetimes of the two atomic lines have similar trends,which supports the point of view of a 'soft spot'.Variations of plasma temperature and electron density under different vacuums are measured.This study is helpful for research on carbon detection using LIBS under vacuum conditions.  相似文献   

4.
Laser-induced breakdown spectroscopy(LIBS) has been developed to in situ diagnose the chemical compositions of the first wall in the EAST tokamak. However, the dynamics of optical emission of the key plasma-facing materials, such as tungsten, molybdenum and graphite have not been investigated in a laser produced plasma(LPP) under vacuum. In this work, the temporal and spatial dynamics of optical emission were investigated using the spectrometer with ICCD.Plasma was produced by an Nd:YAG laser(1064 nm) with pulse duration of 6 ns. The results showed that the typical lifetime of LPP is less than 1.4 μs, and the lifetime of ions is shorter than atoms at ~10~(-6)mbar. Temporal features of optical emission showed that the optimized delay times for collecting spectra are from 100 to 400 ns which depended on the corresponding species. For spatial distribution, the maximum LIBS spectral intensity in plasma plume is obtained in the region from 1.5 to 3.0 mm above the sample surface. Moreover, the plasma expansion velocity involving the different species in a multicomponent system was measured for obtaining the proper timing(gate delay time and gate width) of the maximum emission intensity and for understanding the plasma expansion mechanism. The order of expansion velocities for various species is V_C~+ V_H V_(Si)~+ V_(Li) V_(Mo) V_W.These results could be attributed to the plasma sheath acceleration and mass effect. In addition, an optimum signal-to-background ratio was investigated by varying both delay time and detecting position.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work.  相似文献   

6.
Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy   总被引:2,自引:0,他引:2  
Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.  相似文献   

7.
In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identifq ication of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ.  相似文献   

8.
In this study,a stand-off and collinear double pulse laser-induced breakdown spectroscopy(DP LIBS) system was designed,and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured.The effect of inter-pulse delay on spectra was studied,and the signal enhancement was observed compared to the single pulse LIBS(SP LIBS).The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS.The calibration curves of Ytterbium(Y) and Zirconium(Zr) were investigated.The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.  相似文献   

9.
In this paper,two types of comparison analyses,bulk analysis and defect analysis,were carried out for marine steel.The results of laser-induced breakdown spectroscopy(LIBS)were compared with those of spark optical emission spectrometry(Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy(SEM/EDS) in the bulk and defect analyses.The comparison of the bulk analyses shows that the chemical contents of C,Si,Mn,P,S and Cr obtained from LIBS agree well with those determined using Spark-OES.The LIBS is slightly less precise than Spark-OES.Defects were characterized in the two-dimensional distribution analysis mode for Al,Mg,Ca,Si and other elements.Both the LIBS and SEM/EDS results show the enrichment of Al,Mg,Ca and Si at the defect position and the two methods agree well with each other.SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant.However,LIBS can provide this information,meaning that the sensitivity of LIBS is higher than that of SEM/EDS.LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.  相似文献   

10.
The insoluble aluminum content in steel samples has a significant influence on the quality of the steel.In this paper,laser-induced breakdown spectroscopy(LIBS)is used to analyze the insoluble aluminum content in steel samples using a scanning mode.The average intensity plus 2.5 standard deviations was iterated and the final iteration value was taken as the threshold that distinguishes soluble and insoluble aluminum,and thus total and soluble aluminum content calibration curves were generated.Using the relevant total and soluble aluminum content calibration curves,the total and soluble aluminum contents in steel samples could be determined.The insoluble aluminum content could be determined by subtracting the soluble aluminum content from the total aluminum content.The insoluble aluminum content of standard samples and process product samples were determined using the present mathematical model;the results agreed well with the certified reference values.This method could be used to rapidly characterize the insoluble aluminum content in steel samples.  相似文献   

11.
In order to maintain the pipeline better and remove the dirt more effectively,it was necessary to analyze the contents of elements in dirt.Mg in soil outside of the pipe and the dirt inside of the pipe was quantitatively analyzed and compared by using the laser-induced breakdown spectroscopy(LIBS).Firstly,Mg was quantitatively analyzed on the basis of Mg Ⅰ 285.213 nm by calibration curve for integrated intensity and peak intensity of the spectrum before and after subtracting noise,respectively.Then calibration curves on the basis of Mg Ⅱ 279.553 nm and MgⅡ 280.270 nm were analyzed.The results indicated that it is better to use integrated intensity after subtracting noise of the spectrum line with high relative intensity to make the calibration curve.  相似文献   

12.
The laser-induced breakdown spectroscopy technique has irreplaceable advantages in the field of detection due to its multi-phase specimen detection ability.The development of the LIBS technique for liquid analysis is obstructed by its inherent drawbacks like the surface ripples and extinction of emitted intensity,which make it unpractical.In this work,an in-situ hydrogel formation sampling device was designed and used the hydrogel as the detection phase of LIBS for Cu,Cr and Al in an aqueous solution.With the measured amount of resin placed in the device,the formed hydrogel could be obtained within 20 s after putting the device into water solution.The formed hydrogel could be directly analyzed by LIBS and reflect the elemental information of the water sample.The prominent performance made this hydrogel's formation device especially suitable for quick in-situ environmental liquid analysis using LIBS.  相似文献   

13.
Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement’s accuracy and precision, a new internal stan?dardization scheme, which we named changed internal standardization, was compared with the traditional internal standardization and no internal standardization for the analysis of inorganic el?ements. The new internal standardization scheme used the atomic line of carbon at 247.86 nm and the molecular band of CN at 388.34 nm and C2 at 516.32 nm to normalize the lines of inorganic elements that were distributed in the same spectral channel. The performance of the utilization of the new internal standardization scheme was evaluated using a set of coal samples, including twenty calibration samples and five validation samples. The results show that the coefficients of determination R2 and the slope of calibration models coupled with changed internal standard?ization are better than that of the calibration models coupled with fixed internal standardization and no internal standardization. Moreover, the measurement accuracy and reproducibility of changed internal standardization for the analysis of five validation samples also yielded further improvement. The results that we obtained suggest that changed internal standardization could compensate for the matrix effects, as well as the influence of the difference in the spectral response of the light collection system.  相似文献   

14.
Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium(Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray(SEM/EDX) spectroscopy,showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio(S/N ratio).  相似文献   

15.
Tungsten (W) is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma-wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy.In this work,we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy.Ions with different charge states from 1 to 7 (W+ to W7+) are all observed.The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities,indicating that space separation occurs between the differently charged ion groups.Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon.The temporal profile can be accurately fitted by a shifted Maxwell-Boltzmann distribution,and the velocities of the differently charged ions are also obtained from the fittings.It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface,which indicates that the acceleration process lasts through the period of plasma expansion.The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma,which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.  相似文献   

16.
Recently,a laser-induced breakdown spectroscopic(LIBS) system has been developed for in situ measurements of the chemical compositions of plasma facing materials(PFMs)in the Experimental Advanced Superconducting Tokamak(EAST).In this study,a LIBS system,which was used in a similar optical configuration to the in situ LIBS system in EAST,has been developed to investigate the spatial distribution of PFM elements at 1CP4 Pa.The aim of this study was to understand the nature of the spatial distribution of atoms or ions of different elements in the plasma plume and optimize the signal to background ratio for the in situ LIBS diagnosis in EAST.The spatial profiles of the LIBS signals of C,Si,Mo and the continuous background were measured.Moreover,the influence of laser spot size and laser energy density on the LIBS signals of C,Si,Mo and H was also investigated.The results show that the distribution of the C,Si and Mo peaks' intensities first increased and then decreased from the center to the edge of the plasma plume.There was a maximum value at R≈1.5 mm from the center of the plasma plume.This work aims to improve the understanding of ablating plasma dynamics in very low pressure environments and give guidance to optimize the LIBS system in the EAST device.  相似文献   

17.
Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the ‘drift’ obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants.  相似文献   

18.
Our recent work has determined the carbon content in a melting ferroalloy by laser-induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions.  相似文献   

19.
The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe3+ water solution by a Ti: sapphire laser radiation with pulse duration <45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ-limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection.  相似文献   

20.
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号