首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
         下载免费PDF全文
The Vacuum Vessel(VV) system is an essential component of Keda Torus for experiment(KTX),and various scenarios might take place on it.The VV’s supports should be adequately strong to stand against various loads on VV,which might happen in extreme scenarios.Therefore,the design of VV supports is verified in a single extreme scenario and is subsequently optimized in this report.The numerical simulation based on Finite Element theory is performed as the major method for analysis and optimization.The electromagnetic force in previous analyses serves as the load for the mechanical analyses of supports.During the optimization,the stresses of the W supports decrease remarkably after introducing cotters.Finally,the optimum design has been worked out.It satisfies the requirements regarding the strength and convenience in assembly.  相似文献   

2.
         下载免费PDF全文
Radial equilibrium of the KTX plasma column is maintained by the vertical field which is produced by the equilibrium field coils.The equilibrium is also affected by the eddy current,which is generated by the coupling of copper shell,plasma and poloidal field coils.An equivalent circuit model is developed to analyze the dynamic performance of equilibrium field coils,without auxiliary power input to equilibrium field coils and passive conductors.Considering the coupling of poloidal field coils,copper shell and plasma,the evolution of spatial distribution of the eddy current density on the copper shell is estimated by finite element to analyze the effect of shell to balance.The simulation results show that the copper shell and equilibrium field coils can provide enough vertical field to balance 1 MA plasma current in phase 1 of a KTX discharge.Auxiliary power supply on the EQ coils is necessary to control the horizontal displacement of KTX due to the finite resistance effect of the shell.  相似文献   

3.
KTX is a new reversed field pinch (RFP) magnetic confinement device which is under design in ASIPP and USTC. Major disruption (MD) events may occur in future operating process, which is simulated with the finite element (FE) method. The results present that the peaks of eddy currents on vessel and conductor shell are respectively 11.791 kA and 68.637 kA with maximum stress 67.1 MPa due to high transient electromagnetic (EM) force. It is confirmed that the structure is still strong enough to bear the electromagnetic loads even if the worst case. Besides, as KTX vacuum vessel will take the method of natural cooling for heat dissipation during plasma discharge (0.5–1.0 MA), a preliminary thermal calculation was implemented in normal condition to decide suitable time parameters such as duration and interval. It is suggested that the discharge interval should be no less than 5 min for the complete 1 MA plasma with 100 ms duration, which can guarantee the temperature of vacuum vessel below 200 °C.  相似文献   

4.
为了提高RPI(Rensselaer Polytechnic Institute)欠热沸腾模型在棒束通道数值计算中的准确性并对模型参数的选取提供参考,本文基于FT-6a实验详细分析了RPI模型中3个重要子模型(气泡脱离壁面直径、气泡成核面密度及气泡脱离频率)及两个重要相间非曳力模型(升力及湍流耗散力)对气泡轴向与径向分布及壁面过热度计算结果的影响。分析结果表明:RPI子模型对气泡份额及壁面过热度计算结果的影响较为复杂,不能通过对比单个参数的实验测量值来验证计算的可靠性,应综合对比多个实验值,以确定各子模型的最佳模型参数;非曳力对棒束通道中气泡的径向分布计算结果有明显影响,升力有抑制气泡离开加热壁面的作用,湍流耗散力则有促进气泡向主流区运动的作用。  相似文献   

5.
超临界水氧化技术是处理废树脂的途径之一,能够快速、有效处理核电站产生的含放射性核素的废离子交换树脂。本文提出了一种新型的超临界水氧化反应器,并采用计算流体动力学方法,建立了以多孔介质模型为基础的树脂颗粒非均相反应与均相反应耦合的反应器模型,对其中的流动、换热及化学反应过程进行了数值模拟研究。结果表明,各工况下有机物均完全转化为二氧化碳,各工况均能满足生产要求;随加热功率增加,反应物料出口温度、流域最高温度、压降与出口速度均逐渐增加。  相似文献   

6.
采用CFD软件Star CCM+对中国实验快堆(CEFR)堆芯出口区域的温度脉动现象进行了数值分析。计算中建立了1/4堆芯出口区域模型,采用额定工况下的堆芯出口温度、流量等边界条件,利用LES方法对该问题进行了计算,经分析得出:CEFR功率运行时堆芯出口区域下部的温度脉动主要集中在边缘组件(钢组件、调节棒组件)上方区,出口区域上部的温度脉动在各组件上方区均很显著。最大脉动振幅为19 K,显著脉动频率在5 Hz以下,属于典型的低频脉动。所得结论对下一步实验工作具有积极的指导意义。  相似文献   

7.
为研究高温气冷堆中燃料球的气动力提升过程,本文采用三维计算流体力学数值模拟与三自由度动力学仿真解耦的方法对燃料球的运动轨迹进行了模拟。通过计算流体力学方法计算了燃料球在提升管内所受的气动力,运用三自由度动力学仿真给出了燃料球在输送管道内的运动轨迹。将数值模拟的运动轨迹与实验测量的结果进行对比发现,本文数值模拟可准确地预测燃料球的运动轨迹和碰撞次数,与实验结果相符。这表明本文方法可用于模拟高温堆燃料球的气动力提升过程。  相似文献   

8.
This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.  相似文献   

9.
为研究导叶和叶轮之间匹配对核主泵性能的影响及作用在叶轮上的径向力分布情况,采用CFD技术对不同方案下的核主泵进行非定常数值模拟,并进行试验验证。研究结果表明:核主泵扬程和效率的计算曲线与试验曲线基本吻合,效率相对误差在2.5%左右,扬程相对误差在4%左右;叶轮叶片数和导叶叶片数对核主泵性能影响较大,对其进行合理匹配能有效地提高泵性能;叶轮和导叶的不同匹配使叶轮径向力分布规律具有很大差别,作用在叶轮上的径向力呈周期波动,脉动频率以叶轮通过导叶频率为主;小流量工况下,随着流量的减小,叶轮的径向力及其脉动幅值增大,而变化速率减小;大流量工况下,随着流量的增加,叶轮的径向力及其脉动幅值增大。  相似文献   

10.
张鹏 《原子能科学技术》2012,46(Z1):225-230
基于两流体模型框架,使用雷诺平均N-S方程(RANS)和大涡模拟(LES)两种湍流模型对竖直圆管内的绝热离散气 液两相流动进行数值模拟研究。计算结果表明,采用恰当的相间相互作用模型,两种模型的时均模拟结果同实验均符合较好。气泡的壁面聚集现象被准确预测,速度场预测也较为准确。与基于RANS的SST湍流模型相比,采用WALE亚网格应力的大涡模拟得到的结果同实验符合得更好,且大涡模拟可给出流动的瞬态细节。  相似文献   

11.
蒸汽发生器是钠冷快堆的关键设备之一,其传热管破裂引发的钠水反应会产生大量氢气及热量,危害钠冷快堆的安全运行。本文基于VOF多相流模型,在钠水反应试验系统内开展中小泄漏钠水反应工况的数值分析,获得了高压反应釜内氢气在钠水反应下的三维空间分布特性和迁移特性。结果表明:高压反应釜内氢气的迁移特性受钠液流速影响,氢气在整个循环环路的迁移特性主要受水泄漏量控制。通过设置灵敏度为0.005 ppm的氢计,获得了环路不同区域检测到氢气的最快特征时间。  相似文献   

12.
Sodium-water reaction (SWR) in a steam generator of sodium-cooled fast reactor (SFR) is a significant phenomenon for safety assessment of the system. One of the top concerns in the SWR is an overheating rupture phenomenon in which a neighbor heat transfer tube fails instantaneously because of a deterioration of structural integrity under a high temperature condition. Hence, the heat transfer coefficient on the tube surface is of importance. Since hydrogen gas is generated in the SWR and liquid water will evaporate quickly due to depressurization, the reaction region is covered with a multi-phase flow structure, and thus the value of the heat transfer coefficient will vary widely. In the present paper, a correlation diagram has been developed between the heat transfer coefficient and the void fraction based on one dimensional homogeneous flow simulation. Furthermore, the transient of void fraction in SWAT-1R experiment is investigated using the diagram.  相似文献   

13.
Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30° or 20° they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer; the swirling flow inside a subchannel could reach farther downstream than the cross flow.  相似文献   

14.
为实现开源工具OpenFOAM在管束流固耦合行为预测方面的应用,针对OpenFOAM缺乏大涡模拟验证的综合基准案例、缺乏基于OpenFOAM仿真数据的参数辨识方法和数据驱动建模方法问题,首先通过研究基准问题来定量比较OpenFOAM中大涡模拟的性能,重点讨论统计时间长度、计算域大小与形状、网格划分方式、壁面函数对结果的影响规律,并将数值结果与实验数据进行验证,获得了合理的流场分析模型;然后,将运动方程与流场计算相耦合,求解具有移动边界的非定常Navier-Stokes(uRANS)方程,实现管束的流固耦合仿真,成功捕捉到了管束的流固耦合特征,并以流管模型为例,实现了关键参数辨识和数据驱动建模。结果表明,大涡模拟中,达到统计收敛至少需180个漩涡脱落周期;升力、回流长度对网格分辨率较为敏感,漩涡脱落频率、圆柱表面压力对计算域较为敏感;对于尾流区的统计量分布,网格分辨率的影响更为显著;计算域形状的影响可以忽略;通过数据驱动建模方式计算的临界流速与实验值吻合较好。  相似文献   

15.
液态铅铋合金具有导热性能好、热容量高等特点,是新一代先进反应堆的理想冷却剂。本文建立了高流速铅铋环境下板型燃料组件全尺寸计算流体动力学(CFD)模型,基于大涡模拟湍流模型开展了瞬态流体力学分析并获得了燃料板所受的流体激励力。建立燃料板CFD模型,基于瞬态流体激励数据开展基于时域的结构动力学计算并获得燃料板的位移响应。计算结果显示,由于吊装结构形成的漩涡脱落,中间位置燃料板所受流体激励力远大于两侧位置燃料板。燃料板位移响应集中于自身的一阶频率,并且单组燃料板的一阶频率远大于湍流激励主频,因此燃料板没有在流体激励下共振的风险。考虑到入口湍流强度影响,基于矩形流道功率密度谱的流致振动分析方法保守性能不足。本研究可为新一代高性能燃料组件研发提供参考。  相似文献   

16.
Vortex diode, as an important component in power fluidics, has been widely used in nuclear reprocessing engineering for about two decades. The fluidic system with vortex diodes is always working under a condition with a pulsant pneumatic power input. However, no detailed analysis of the unsteady flow inside the vortex diodes is available. Therefore, we carried out large eddy simulation (LES) to investigate the transient start-up process on the foundation of the experiment by Jacob et al. The numerical results were compared with the experimental data. It is shown that the special flow-time profiles in the start-up process are well predicted. From a further analysis on the internal flow, it is indicated that the change of flow rate with time is relevant to the varying of internal flow pattern and the swirling level. The above-mentioned methods and results of the vortex diode are of great guiding significance to predict the transient performance of the fluidic transfer system.  相似文献   

17.
Plasma Shape and Current Control Simulation of HT-7U Tokamak   总被引:1,自引:0,他引:1  
This paper describoes the discharge simulation of HT-7U tokamak plasma equilibrium and plasma current by solving MHD equations and surface average transport equations using an equilibrium evolution code. The simulated result shows the evolution of plasma parameter versus time .The simulated result can play an important role in the design of the plasma equilibrium and control system of a tokamak.  相似文献   

18.
         下载免费PDF全文
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor (ITER) baseline scenario. The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code, respectively. The linear simulations focus on the dependence of linear frequency on the plasma parameters, such as the ion and electron temperature gradients $ kappa_{T_{rm{i,e}}}equiv R/L_{T_{rm{i,e}}} $, the density gradient $ kappa_nequiv R/L_n $ and the ion–electron temperature ratio $ tau=T_{rm{e}}/T_{rm{i}} $. Here, $ R $ is the major radius, and $ T_{rm{e}} $ and $ T_{rm{i}} $ denote the electron and ion temperatures, respectively. $ L_A=-(partial_rln A)^{-1} $ is the gradient scale length, with $ A $ denoting the density, the ion and electron temperatures, respectively. In the kinetic electron model, the ion temperature gradient (ITG) instability and the trapped electron mode (TEM) dominate in the small and large $ k_theta $ region, respectively, where $ k_theta $ is the poloidal wavenumber. The TEM-dominant region becomes wider by increasing (decreasing) $ kappa_{T_{rm{e}}} $ ($ kappa_{T_{rm{i}}} $) or by decreasing $ kappa_n $. For the nominal parameters of the ITER baseline scenario, the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model. The normalized linear frequency depends on the value of $ tau $, rather than the value of $ T_{rm{e}} $ or $ T_{rm{i}} $, in both the adiabatic and kinetic electron models. The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model, the radial structure is finer and the time oscillation is more rapid. In addition, the magnitude of the fluctuated potential at the saturated stage peaks in the ITG-dominated region, and contributions from the TEM (dominating in the higher $ k_theta $ region) to the nonlinear transport can be neglected. In the adiabatic electron model, the zonal radial electric field is found to be mainly driven by the turbulent energy flux, and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect. However, in the kinetic electron model, the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage. The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.  相似文献   

19.
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradients κTi,e ≡ R/LTi,e,the density gradient κn ≡ R/Ln and the ion-electron temperature ratio τ=Te/Ti.Here,R is the major radius,and Te and Ti denote the electron and ion temperatures,respectively.LA=-(∂rlnA)-1 is the gradient scale length,with A denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large kθ region,respectively,where kθ is the poloidal wavenumber.The TEM-dominant region becomes wider by increasing(decreasing)κTe(κTi)or by decreasing κn.For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value of τ,rather than the value of Te or Ti,in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITG-dominated region,and contributions from the TEM(dominating in the higher kθ region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.  相似文献   

20.
为探明酸法地浸采铀过程中杂质矿物对铀浸出的影响,以分批浸出试验为基础,采用反应路径模拟探讨杂质矿物对铀浸出机制的影响,利用反应溶质运移模型探讨杂质矿物对铀浸出化学场时空特征的影响。模拟结果表明:方解石、黄铁矿、赤铁矿会与铀矿竞争酸,竞争由强至弱依次为方解石、赤铁矿、黄铁矿,其中黄铁矿在酸浸条件下溶解较弱,但生成的低价硫和亚铁离子能降低溶浸液的Eh值,导致铀浸出减少,赤铁矿在酸浸条件下因耗酸而降低溶浸液的酸度,但又促进黄铁矿的溶解,进而影响铀的浸出;在时间上,杂质矿物会使铀的溶解迁移存在不同程度的滞后,铀的溶解-沉淀旋回周期延长,整个模拟矿层沥青铀矿完全溶解时间更长,铀浸出速率降低;在空间上,杂质矿物会使模拟矿层中铀矿溶解范围减小,铀矿溶解-沉淀旋回过程中沉淀量增加,U(Ⅵ)迁移浸出所需时间延长,浸出铀的迁移累积峰值变化不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号