首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aerodynamic lens system of the Aerodyne Aerosol Mass Spectrometer (AMS) was analyzed using the Aerodynamic Lens Calculator. Using this tool, key loss mechanisms were identified, and a new lens design that can extend the transmission of particulate matter up to 2.5 μm in diameter (PM2.5) was proposed. The new lens was fabricated and experimentally characterized. Test results indicate that this modification to the AMS lens can significantly improve the transmission of large sized particles, successfully achieving a high transmission efficiency up to PM2.5 range.

© 2016 American Association for Aerosol Research  相似文献   


3.
4.
Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. In situ analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5–3 µm size range. The design minimizes particle collection areas allowing for in situ optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 µm particles for the flow rate of 1 slpm. Particles bigger than 1 µm have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10–20 µL. The transparent collection substrate and the distinct collection region, independent of particle size, allows for in situ optical analysis of the collected PM.

© 2017 American Association for Aerosol Research  相似文献   


5.
6.
7.
The recent development of miniature particle detectors stems from the demanding need to monitor/measure particles, especially nanoparticles, at the personal level for epidemiological studies or studies investigating the interaction among genes and environmental factors, including particulates. Light scattering and electrical mobility techniques have been implemented in these mini-devices for monitoring submicron particles. The presence of large particles in the sampling stream, however, affects the performance of these mini-detectors. Prototype mini-cyclones were thus developed as a size selective inlet for mini-particle detectors. In this study two “quarter-sized” mini-cyclones were designed to remove particles larger than 1.0 and 0.3 μm at a flow rate of 0.3 lpm, and their performance was experimentally evaluated. The performance of prototypes was also compared with that of existing personal sampling cyclones. Further, empirical models to estimate the performance of the prototype mini-cyclones (i.e., the 50% cutoff particle size and pressure drop) were also established. The developed linear regression model can thus serve as the tool for the future design of mini-cyclones with the similar size and configuration.  相似文献   

8.
A flow reactor incorporating aerodynamic levitation is designed to study the combustion characteristics of single, isolated coal particles. In the experiment, spherical coal particles (1000–6000μm diameter) are positioned by a vertical free jet in a well-controlled combustion environment. The particle temperature is monitored continuously by an infrared pyrometer. Coal particles are periodically collected and weighed to determine the extent of reaction. Experimental variables include heating rate, fuel properties, reactor conditions, and transport properties. The resultant kinetics data are compared to theoretical rates calculated using a simplified coal combustion model. The correspondence between measured and predicted rates confirms the applicability of the experimental technique.  相似文献   

9.
Routine calibrations of online aerosol chemical composition analyzers are important for assessing data quality during field measurements. The combination of a differential mobility analyzer (DMA) and condensation particle counter (CPC) is a reliable, conventional method for calibrations. However, some logistical issues arise, including the use of radioactive material, quality control, and deployment costs. Herein, we propose a new, simple calibration method for a particle mass spectrometer using polydispersed aerosol particles combined with an optical particle sizer. We used a laser-induced incandescence–mass spectrometric analyzer (LII-MS) to test the new method. Polydispersed aerosol particles of selected chemical compounds (ammonium sulfate and potassium nitrate) were generated by an aerosol atomizer. The LII section was used as an optical particle sizer for measuring number/volume size distributions of polydispersed aerosol particles. The calibration of the MS section was performed based on the mass concentrations of polydispersed aerosol particles estimated from the integration of the volume size distributions. The accuracy of the particle sizing for each compound is a key issue and was evaluated by measuring optical pulse height distributions for monodispersed ammonium sulfate and potassium nitrate particles as well as polystyrene latex particles. A comparison of the proposed method with the conventional DMA-CPC method and its potential uncertainties are discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
Characteristics of particle adhesion (deposition) patterns in an aerodynamic cyclone were studied by both experimental methods and computational fluid dynamic (CFD) simulation methods. The cyclone used in the experiment was made of acrylonitrile butadiene styrene (ABS). The particles were a plaster material, with an average size of 1.13 μm and a density of 2300 kg/m3. Four levels of particle load rates were examined, ranging from 0.28 g/m3 to 0.96 g/m3 at a fixed mass flow rate of 2.1 g/s. Experimental results showed three key features of particle adhesion patterns. They are large-scale spiral patterns (SPs), small-scale wave patterns (WPs), and thick adhesion layer (TAL) at the cyclone tip region. It was observed that the SPs had five turns and the WPs were periodic discrete patterns that crept slowly against the flow direction. The formation of WPs was explained based on the Barchan sand dune mechanism. Under zero particle load rate, six different mass flow rates ranging from 1.24 g/s to 3.16 g/s were simulated using CFD. It was found that the precessional bent vortex end (PBVE), precessing along the circumference of the cyclone tip, occurred close to the cyclone tip. The PBVE was believed to be the cause of the TAL, because there was a weak wall shear stress region below the PBVE. In addition, particle trajectories were simulated at a mass flow rate of 2.26 g/s. Simulation results showed that particles had spiral trajectories that were supposed to be linked with the SPs.

Copyright © 2017 American Association for Aerosol Research  相似文献   


11.
12.
The ability of atmospheric particles to absorb water has extensive climate, atmospheric chemistry, and health implications, and considerable effort has gone into determining relationships between particle composition and hygroscopicity. Parallel techniques, in which co-located composition and hygroscopicity measurements are combined to infer composition-hygroscopicity relationships, may not detect the influence of external mixtures. Previous in-line measurements have been limited to single-particle composition or a limited analyte range, and are often non-quantitative and/or offline. Here, we present for the first time in-series, online, quantitative hygroscopicity-composition measurements using a Brechtel Manufacturing, Inc. Hybrid Tandem Differential Mobility Analyzer and an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This technique is first verified using laboratory-generated external particle mixtures, then extended to ambient measurements at a seaside sampling side at the Hong Kong University of Science and Technology. The technique successfully separated laboratory-generated particles of differing hygroscopicities and showed promise for atmospheric particles, though high mass attenuation endemic to the HTDMA dual size selection limits application to environments with at least ~14–41 μg/m3 of particulate mass, depending on composition.

Copyright © 2017 American Association for Aerosol Research  相似文献   


13.
A method based on real-time responses of an aerodynamic particle sizer (APS) has been developed to monitor the formation of both ideal and nonideal solid aerosol particles. Preliminary studies demonstrated that, at various generating conditions, the morphology change of particles in photomicrographs can be identified from the channel shift in the APS outputs. With this method, the time-consuming conventional way of ensuring the dryness, sphericity and monodispersity of particles with scanning electron microscopic studies is not required. The technique has been used successfully to determine optimum conditions for the generation of monodisperse ammonium fluorescein particles (3–17 μm) with a vibrating orifice aerosol generator under certain operating conditions. The mean density of the particles that were generated was calculated to be 1.35 g cm−3.  相似文献   

14.
15.
16.
The aerodynamic particle sizer (APS) measures the size distributions of particles with aerodynamic diameter between 0.5 and in real time. To provide accurate size distributions, the APS must measure both particle size and concentration correctly. The objective of this study was to characterize the counting efficiency of the APS as a function of particle size (0.8–), particle type (liquid or solid), and APS model number (3310 vs. 3321). For solid particles, counting efficiencies ranged between 85% and 99%. For liquid droplets, counting efficiencies progressively declined from 75% at 0.8-μm drops to 25% for 10-μm drops. Fluorometric wash tests indicated that transmission losses occur when larger droplets impact on the instrument's inner nozzle. However, transmission losses did not account entirely for the reduced droplet counting efficiencies, indicating that additional losses may have occurred downstream of the inner nozzle. Between instrument comparisons revealed that although multiple APSs report similar number concentrations, small deviations in particle sizing can produce substantial errors when number concentrations are converted to mass concentrations.  相似文献   

17.
The Aerodyne quadrupole aerosol mass spectrometer was deployed on the Falcon twin jet research aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). This was the first deployment of an AMS in a jet aircraft. Aerosol mass concentration measurements in the troposphere up to altitudes of about 11 km were performed within two measurement flights on 12 and 14 May 2003 over southern Germany. Background aerosol data were gained up to 6 km, while aircraft exhaust aerosol was be sampled at higher altitudes on 14 May, indicating the presence of sulfuric acid and unburned hydrocarbons in the exhaust particles. The boundary layer aerosol on 12 May was found to be composed of 49% organics, 12% sulfate, 15% ammonium, and 24% nitrate by mass. The upper edge of the boundary layer was marked by a sharp decrease of nitrate and ammonium at an altitude of 3 km, while sulfate and organics decreased to a much lesser degree. On 14 May, the boundary layer aerosol was composed of 23% organics, 20% sulfate, 24% ammonium, and 33% nitrate by mass, and the boundary layer reached up to about 5000 m and had no sharp upper edge. The size distributions indicated internal mixtures of ammonium sulfate and –nitrate in the boundary layer, while the organics were externally mixed. Additionally, a smaller mode consisting only of ammonium sulfate, was detected. This bimodal structure of ammonium sulfate was also detected above the boundary layer in 6 km altitude on 14 May.  相似文献   

18.
A theoretical model, which considers the fully unsteady character of both heat and mass transfer during the drying of single droplet/wet particle, is presented. The model enables prediction of pressure and fraction distributions of air-vapour mixture within the capillary pores of the wet particle crust. The simulations of the drying process of a single silica droplet under different conditions show a permanent rising of pressure within the capillary pores, but the corresponding vapour fraction remains less than unity. The comparison between the drying histories of the silica droplet, predicted by the present model with the data, calculated by the model which assumes a quasi-steady-state mass transfer and linear pressure profile within the capillary pores, shows inconsiderable differences between the droplet/wet particle temperature and mass time-changes. At the same time, the present model predicts pressure build-up and temperature rising within the particle wet core. However, in the studied cases the temperature of the wet core temperature does not exceed the liquid saturation temperature and therefore no boiling of liquid within the particle wet core is observed.  相似文献   

19.
20.
Accurate development and evaluation of inlets for representatively collecting ambient particulate matter typically involves the use of monodisperse particles in aerosol wind tunnels. However, the resource requirements of using monodisperse aerosols for inlet evaluation creates the need for more rapid and less-expensive techniques to enable determination of size-selective performance in aerosol wind tunnels. The goal of recent wind tunnel research at the U.S. EPA was to develop and validate the use of polydisperse aerosols, which provide more rapid, less resource-intensive test results, which still meet data quality requirements necessary for developing and evaluating ambient aerosol inlets. This goal was successfully achieved through comprehensive efforts regarding polydisperse aerosol generation, dispersion, collection, extraction, and analysis over a wide range of aerodynamic particle sizes. Using proper experimental techniques, a sampler’s complete size-selective efficiency curve can be estimated with polydisperse aerosols in a single test, as opposed to the use of monodisperse aerosols, which require conducting multiple tests using several different particle sizes. While this polydisperse aerosol technique is not proposed as a regulatory substitute for use of monodisperse aerosols, the use of polydisperse aerosols is advantageous during an inlet’s development where variables of sampling flow rate and inlet geometry are often iteratively evaluated before a final inlet design can be successfully achieved. Complete Standard Operating Procedures for the generation, collection, and analysis of polydisperse calibration aerosols are available from EPA as downloadable files. The described experimental methods will be of value to other researchers during the development of ambient sampling inlets and size-selective evaluation of the inlets in aerosol wind tunnels.

© 2018 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号