首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
Channel fluorine implantation (CFI) has been successfully integrated with silicon nitride contact etch stop layer (SiN CESL) to investigate electrical characteristics and stress reliabilities of the n-channel metal–oxide–semiconductor field-effect-transistor (nMOSFET) with HfO2/SiON gate dielectric. Although fluorine incorporation had been used widely to improve device characteristics, however, nearly identical transconductance, subthreshold swing and drain current of the SiN CESL strained nMOSFET combining the CFI process clearly indicates that stress-induced electron mobility enhancement does not affect by the fluorine incorporation. On the other hand, the SiN CESL strained nMOSFET with fluorine incorporation obviously exhibits superior stress reliabilities due to stronger Si–F/Hf–F bonds formation. The channel hot electron stress and constant voltage stress induced threshold voltage shift can be significantly suppressed larger than 26% and 15%, respectively. The results clearly demonstrate that combining the SiN CESL strained nMOSFET with fluorinated gate dielectric using CFI process becomes a suitable technology to further enhance stress immunity.  相似文献   

2.
The thickness effects of a high-tensile-stress contact etch stop layer (HS CESL) and the impact of layout geometry (length of diffusion (LOD) and gate width) on the mobility enhancement of lang100rang/(100) 90-nm silicon-on-insulator (SOI) n-channel MOSFETs (nMOSFETs) were studied in detail. Additionally, the low-frequency characteristics were inspected using low-frequency noise investigation for floating body (FB)-SOI nMOSFETs. Experimental results show that a device with a 1100-Aring HS CESL has worse characteristics and hot-carrier-induced degradations than a device with a 700-Aring; HS CESL due to larger stress-induced defects. The lower plateau of the Lorentzian noise spectrum that was observed from the input-referred voltage noise Svg implies a higher leakage current for devices with a 1100-Aring HS CESL. On the other hand, it was found that devices with narrow gate widths have higher driving capacity for a larger fringing electric field and higher compressive stress in the direction perpendicular to the channel. Because of the more serious impact of compressive stress in a direction parallel to the channel, a device with shorter LOD experiences more serious performance degradation  相似文献   

3.
Hsu and Grinolds recently compared channel hot-electron (CHE) stress results of conventional and "extended drain" NMOS FET's. [1]. They observe increasing degradation as the extended drain resistance increases when the drain bias is defined as that which produces a fixed substrate current. A model in which the hot-electron stress induces surface states within the extended drain region is proposed. We argue that the drain bias condition chosen for these measurements does not produce equal numbers of channel hot electrons in all devices as is claimed. Since the ratio of substrate current to source current is a measure of the mean electron energy, we claim that this ratio (and hence the mean electron energy) increases as extended drain resistance increases.  相似文献   

4.
The thickness effects of high-tensile-stress contact etch stop layer (HS CESL) and impact of layout geometry (length of diffusion and gate width) on mobility enhancement of 100/(100) 90 nm SOI nMOSFETs were studied in detail. Additionally, we also inspected the low frequency characteristic with low-frequency noise investigation for FB-SOI nMOSFETs. Experimental results show that devices with 1100 Å HS CESL possess worse characteristics and hot-carrier-induced degradations than devices with 700 Å HS CESL due to serious stress-induced defects happen. The lower plateau of Lorentzian noise spectrum observed from input-referred voltage noise (Svg) implies higher leakage current for the devices with 1100 Å HS CESL. On the other hand, we found that devices with narrow gate widths possess higher driving capacity because of larger fringing electric fields and higher compressive stress in direction perpendicular to the channel. Owing to the more serious impact of compressive stress in direction parallel to the channel, the device performance was degraded particularly for devices with shorter LOD.  相似文献   

5.
The intrinsic stress of thin films has become an important resource as advanced strain engineering is introduced into nanoscaled semiconductor devices. The performance of preferred device infrastructure can be studied by estimating stress-induced mobility gain. However, traditional simulation approaches for device stress typically do not consider the eventual consequence of the stress gradient of strained thin films on nanoscaled transistor stress prediction. Thus, the actual operating characteristic of concerned devices can be easily misunderstood. To resolve this issue, this research presents a fabrication-oriented simulation methodology for device stress and combines it with a multi-layered deposition model for thin film. This study aims to explore stress-induced effects on the performance of a Ge-based testing vehicle for 20 nm n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) with Ge1−xSix alloys embedded into the source/drain regions of the device. Intrinsic stress is introduced via a 1.0 GPa tensile contact etch stop layer (CESL). Analysis results indicate that stress contours adjacent to the top of the device gate are different from those obtained using the conventional simulation method. Moreover, greater CESL stress passes through the spacer and reaches the device channel. Furthermore, a relationship between the stress components and piezoresistivity coefficients of the Ge material is adopted to estimate the width dependence of the Ge-based nMOSFET on its mobility gain. A maximum mobility gain of up to 60.87% is acquired from the estimated results, and a channel width of 200 nm is preserved.  相似文献   

6.
《Microelectronic Engineering》2007,84(9-10):2077-2080
For SOI nMOSFET, the impact of high tensile stress contact etch stop layer (CESL) on device performance and reliability was investigated. In this work, device driving capability can be enhanced with thicker CESL, larger LOD and narrower gate width. With electrical and body potential inspection, serious device’s degradation happened on SOI-MOSFET with narrow gate device because of STI-induced edge current.  相似文献   

7.
研究了热载流子应力下栅厚为2.1nm,栅长为0.135μm的pMOSFET中HALO掺杂剂量与器件的退化机制和参数退化的关系.实验发现,器件的退化机制对HALO掺杂剂量的改变不敏感,但是器件的线性漏电流、饱和漏电流、最大跨导的退化随着HALO掺杂剂量的增加而增加.实验同时发现,器件参数的退化不仅与载流子迁移率的退化、漏串联电阻增大有关,而且与阈值电压的退化和应力前阈值电压有关.  相似文献   

8.
An ultrafast on-the-fly technique is developed to study linear drain current (I DLIN) degradation in plasma and thermal oxynitride p-MOSFETs during negative-bias temperature instability (NBTI) stress. The technique enhances the measurement resolution (ldquotime-zerordquo delay) down to 1 mus and helps to identify several key differences in NBTI behavior between plasma and thermal films. The impact of the time-zero delay on time, temperature, and bias dependence of NBTI is studied, and its influence on extrapolated safe-operating overdrive condition is analyzed. It is shown that plasma-nitrided films, in spite of having higher N density, are less susceptible to NBTI than their thermal counterparts.  相似文献   

9.
赵迪  罗谦  王向展  于奇  崔伟  谭开洲 《半导体学报》2015,36(1):014010-4
本文针对应变NMOSFET提出了一种基于槽型结构的应力调制技术。该技术可以利用压应变的CESL(刻蚀阻挡层)来提升Si基NMOSFET的电学性能,而传统的CESL应变NMOSFET通常采用张应变CESL作为应力源。为研究该槽型结构对典型器件电学性能的影响,针对95 nm栅长应变NMOSFET进行了仿真。计算结果表明,当CESL应力为-2.5 GPa时,该槽型结构使沟道应变状态从对NMOSFET不利的压应变(-333 MPa)转变为有利的张应变(256 MPa),从而使器件的输出电流和跨导均得到提升。该技术具有在应变CMOS中得到应用的潜力,提供了一种不同于双应力线(DSL)技术的新方案。  相似文献   

10.
This study investigates the effects of oxide traps induced by SOI of various thicknesses (TSOI = 50, 70 and 90 nm) on the device performance and gate oxide TDDB reliability of Ni fully silicide metal-gate strained SOI MOSFETs capped with different stressed SiN contact-etch-stop-layer (CESL). The effects of different stress CESLs on the gate leakage currents of the SOI MOSFET devices are also investigated. For devices with high stress (either tensile or compressive) CESL, thinner TSOI devices have a smaller net remaining stress in gate oxide film than thicker TSOI devices, and thus possess a smaller bulk oxide trap (NBOT) and reveal a superior gate oxide reliability. On the other hand, the thicker TSOI devices show a superior driving capability, but it reveals an inferior gate oxide reliability as well as a larger gate leakage current. From low frequency noise (LFN) analysis, we found that thicker TSOI device has a higher bulk oxide trap (NBOT) density, which is induced by larger strain in the gate oxide film and is mainly responsible for the inferior gate oxide reliability. Presumably, the gate oxide film is bended up and down for the p- and nMOSFETs, respectively, by the net stress in thicker TSOI devices in this CESL strain technology. In addition, the bending extent of gate oxide film of nMOSFETs is larger than that of pMOSFETs due to the larger net stress in gate oxide film resulting from additional compressive stress of shallow trench isolation (STI) pressed on SOI. Therefore, an appropriate SOI thickness design is the key factor to achieve superior device performance and reliability.  相似文献   

11.
An anomalous behavior of nMOSFET's hot carrier reliability characteristics has been investigated at an elevated temperature for the first time. Although the degradation of linear drain current is significantly reduced with increasing stress temperature, the degradation of saturation drain current is enhanced for high temperature stress. This behavior can be explained by the reduction of the velocity saturation length at an elevated temperature, which increases the net amount of interface states that can influence the channel current. This anomalous behavior causes a significant impact on the device reliability for future deep submicrometer devices at high operating temperatures  相似文献   

12.
Current-voltage characteristics for AlGaAs/GaAs 2DEGFETs (two-dimensional electron gas FETs) have been investigated at low temperatures in terms of stress biases and stress time. The study reveals that the degree of collapse strongly depends on the magnitude of the stress drain voltage. The device exhibits seriously collapsed I -V characteristics when the stress drain voltage is chosen at around 1.2 V. Application of higher stress drain voltages leads to less distorted I-V characteristics, demonstrating a collapse-recovery mechanism without the need for illuminating or heating the device, and therefore the heavily collapsed state and the recovered state can be switched with each other by simply changing the value of the stress drain voltage. Based on the gate current analysis during the bias stress step, the authors attribute the mechanism responsible for the drain-stress-induced recovery phenomenon to the ionization of DX centers by capture of holes generated by impact ionization  相似文献   

13.
14.
研究了不同沟道和栅氧化层厚度的n-M O S器件在衬底正偏压的VG=VD/2热载流子应力下,由于衬底正偏压的不同对器件线性漏电流退化的影响。实验发现衬底正偏压对沟长0.135μm,栅氧化层厚度2.5 nm器件的线性漏电流退化的影响比沟长0.25μm,栅氧化层厚度5 nm器件更强。分析结果表明,随着器件沟长继续缩短和栅氧化层减薄,由于衬底正偏置导致的阈值电压减小、增强的寄生NPN晶体管效应、沟道热电子与碰撞电离空穴复合所产生的高能光子以及热电子直接隧穿超薄栅氧化层产生的高能光子可能打断S i-S iO2界面的弱键产生界面陷阱,加速n-M O S器件线性漏电流的退化。  相似文献   

15.
随着集成电路技术的快速发展,等比例缩小技术已经不能满足摩尔定律,应变硅金属氧化物硅场效应晶体管(MOSFET)技术成为后硅时代研究的热点。应变硅技术通过拉伸或压缩硅晶格达到器件尺寸不变的情况下,可提高器件性能的目的,同时应变硅技术与传统硅工艺兼容,节约了生产成本。对于应变硅互补金属氧化物硅晶体管(CMOS)器件的性能以及可靠性问题的研究也日益增加。本文通过介绍几种常用的应变技术(应力记忆技术(SMT),锗化硅技术(SiGe),接触孔刻蚀阻挡层(CESL))的应变机理、材料性能和工艺条件对应力技术的影响来探讨以后应力技术的发展趋势。  相似文献   

16.
A new insight into the self-limiting hot-carrier degradation in lightly-doped drain (LDD) n-MOSFETs is presented. The proposed model is based on the charge pumping (CP) measurement. By progressively lowering the gate base level, the channel accumulation layer is caused to advance into the LDD gate-drain overlap and spacer oxide regions, extending the interface that can be probed. This forms the basis of a novel technique, that allows the contributions to the CP current, due to stress-induced interface states in the respective regions, to be effectively separated. Results show that interface state generation initiates in the spacer oxide region and progresses rapidly into the overlap/channel region with stress time. The close correspondence between the linear drain current degradation, measured at high and low gate bias, and the respective interface state generation in the spacer and the overlap/channel regions deduced from CP data, provides an unambiguous experimental evidence that the degradation proceeds in a two-stage mechanism, involving first a series resistance increase and saturation, followed by a carrier mobility reduction. The saturation in series resistance increase results directly from a reduced interface state generation rate in the spacer oxide. For a given density of defect precursors and considering an almost constant channel field distribution near the drain region during stress, interface trap generation rate is shown to exhibit an exponential stress time dependence, with a characteristic time constant determined by the applied voltages. This observation leads to a lifetime extrapolation methodology. Lifetime due to a particular stress drain voltage Vd, may be extracted from a single composite degradation characteristic, obtained by shifting characteristics for various stress Vd's, along the stress time axis, until the characteristics merge into a single curve  相似文献   

17.
本文研究了半开态直流应力条件下,AlGaN/GaN高电子迁移率晶体管的退化机制。应力实验后,器件的阈值电压电压正漂,栅漏串联电阻增大。利用数据拟合发现,沟道电流的退化量与阈值电压及栅漏串联电阻的变化量之间有密切的关系。分析表明,阈值电压的退化是引起饱和区沟道电流下降的主要因素,对于线性区电流,在应力开始的初始阶段,栅漏串联电阻的增大导致线性区电流的退化,随后沟道电流退化主要由阈值电压的退化引起。分析表明,在半开态应力作用下,栅泄露电流及热电子效应使得电子进入AlGaN层,被缺陷俘获,进而导致沟道电流退化。其中反向栅泄露电流中的电子被栅电极下AlGaN层内的缺陷俘获,导致阈值电压正漂;而热电子效应则使得栅漏串联区电阻增大。  相似文献   

18.
Impact of ESD-induced soft drain junction damage on CMOS product lifetime   总被引:1,自引:0,他引:1  
The impact of ESD-induced soft drain junction damage on product lifetime was investigated. Several thousand input-output (IO) pads of a 0.35 pm CMOS IC were stressed by ESD (electrostatic discharge) and subsequently subjected to bakes, ESD re-stress and high temperature operating life tests. While the ESD-induced soft drain junction damage appears to be stable versus temperature stress and ESD-re-stress, it results in early failures during accelerated operating life tests. These lifetest failures are caused by breakdown of the gate oxide which was left unbroken during the ESD stress that caused the ESD-induced soft drain junction damage. Thus, ESD-induced soft drain junction damage might cause a reliability risk (latent ESD failure). Consequently, it needs to be avoided by assuring a sufficient robustness of the IC against this ESD damage mechanism. A leakage current criterion of I VA is rather large to detect this kind of damage after ESD stress.  相似文献   

19.
The shift in the drain current of a nearby unstressed MOSFET device was used to study the apparent relaxation effect on the drain current of a stressed device observed after the hot-carrier stress is stopped. A simple correction scheme is shown to be adequate for removing this effect. It was found that the effect may not be due to any decrease in the actual degradation. Instead, findings strongly support the idea that the major cause is a shift in the temperature due to heat dissipation caused by self-heating during the stress  相似文献   

20.
This paper presents an electrical analysis of mechanical stress induced by shallow trench isolation (STI) on MOSFETs of advanced 0.13 /spl mu/m bulk and silicon-on-insulator (SOI) technologies. By applying external calibrated stress, we present piezoresistive coefficients measurements on these technologies, and we compare small and long transistors electrical responses, evidencing the strong effect of source drain resistance R/sub sd/. Then, using the same approach on short devices with different gate-edge-to-STI distances, we quantitatively evaluate stress profile induced by STI and its mean value under the gate of the devices. Results are discussed to explain differences between bulk and SOI technologies, as well as between nMOS and pMOS. We show that the observed higher pMOS drain current shift is related to the process, and may be explained by doping amorphization and recrystallization effects, and not by a piezoresistive coefficient difference as usually assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号