首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.  相似文献   

2.
Corticotropin-releasing factor (CRF) receptors in IMR-32 human neuroblastoma cells were characterized after differentiation with 2.5 microM 5'-bromo-2'-deoxyuridine for 10 days. Scatchard analysis of [125I-Tyr0]ovine CRF binding revealed a high affinity binding site with a dissociation constant of 0.59 nM and a maximum binding capacity of 142 fmol/mg, the affinity of which was decreased by guanosine 5'-o-(3-thiotriphosphate). This binding was displaced in the following order of potency: human/rat CRF > ovine CRF > urotensin I > sauvagine > bovine CRF > [D-Phe12, Nle21,38, C alpha-MeLeu37]human/rat CRF-(12-41) > alpha-helical CRF-(9-41), indicative of the CRF1 receptor subtype. Functional coupling of this receptor was confirmed by CRF-induced increases in cyclic AMP, which were antagonised by alpha-helical CRF-(9-41) and [D-Phe12,Nle21,38,C alpha-MeLeu37] human/rat CRF-(12-41).  相似文献   

3.
The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.  相似文献   

4.
In order to understand if antiplatelet drugs possess direct antineoplastic property, we tested the apoptotic effect of 5 popularly marketed antiplatelet drugs in Taiwan in 6 cultured cancer cell lines (Hep 3B hepatocarcinoma, U87-MG malignant glioma, PC-3 prostate adenocarcinoma, HeLa cervical adenocarcinoma, HL-60 preleukemia and K-562 chronic myelogenous leukemia). While acetylsalicylate and flunarizine exerted no effect on these cancer cells, pentoxifyline (PTX), dipyridamole (DYA) and ticlopidine hydrochloride (T. HCl) displayed a time and dose-dependent apoptotic effect on them except for HL-60 and K-562 cells. PTX induced apoptosis in U87-MG, Hep 3B and HeLa cells, DYA in HeLa cells, while T. HCl in U87-MG, Hep 3B, PC-3 and HeLa cells. Adriamycin also provoked apoptotic effect in all 6 cell lines but neither PTX, DYA nor T. HCl acted synergy with adriamycin to HeLa cells, implicating that they may share a similar pathway for inducing apoptosis. Therefore, our results show that the antiplatelet drugs do possess antineoplastic property in vitro. A co-administration of antiplatelet drugs is noteworthy for an alternative adjunctive therapy in cancer patients.  相似文献   

5.
In patients with neuroblastoma (NB) or breast carcinoma (BC), metastatic disease in the bone marrow (BM) is observed more frequently than at any other site, and a high incidence of BM metastases in these patients is associated with advanced disease and poor prognosis. These observations suggest the presence of BM micro-environmental elements that are favorable for NB and BC tumor cell growth. The influence of normal human BM cell-derived conditioned medium (CM) on clonogenic growth of BC and NB cell lines was investigated in vitro. The effects obtained were compared with those on tumor cells with a lower potential for BM metastasis. CM from unstimulated cultures of normal, healthy, low-density BM cells reproducibly and markedly augmented clonogenic growth of 3 BC and 3 NB cell lines. In contrast, growth of cell lines established from human tumors with differing metastatic propensity was unaffected by BM CM. Initial characterization, using crude BM CM, indicated that mitogenic activity (i) is mediated by peptides released by the non-adherent fraction of low-density BM cells and (ii) is not abolished by neutralizing antibodies against various cytokines known to be produced by BM cells and to regulate hematopoietic cell growth. Our observations suggest that certain specific peptides in the BM micro-environment may be responsible for the preferential growth of NB and BC metastases in BM.  相似文献   

6.
7.
Retinoids and analogs of vitamin D3 may achieve greater in vivo applications if the toxic side effects encountered at pharmacologically active doses could be alleviated. These seco-steroid hormones often act in concert, and therefore, we attempted to dissect these interactions by isolating combinations of receptor-selective retinoids and a potent vitamin D3 analog [1alpha,25(OH)2-16ene-23-yne-26,27,F6-19nor-D3, code name LH] that were potent inhibitors of prostate cancer cell growth at low, physiologically safer doses. Using a panel of prostate cancer cell lines representing progressively more transformed phenotypes, we found that the LNCaP cell line (least transformed) was either additively or synergistically inhibited in its clonal growth by LH and various naturally occurring and receptor-selective retinoids, the most potent combination being with a retinoic acid receptor (RAR)betagamma-selective retinoid (SR11262). The effect was not found with either PC-3 (intermediate transformation) or DU-145 (most transformed). We also undertook RT-PCR to examine the subtypes of RARs present, and we found that PC-3 and DU-145 did not express RARbeta. Stable expression of RARbeta into the RARbeta-negative PC-3 cells resulted in increased sensitivity to SR11262 and LH proportional to the amount of RARbeta expressed. This study indicates that RARbeta may play an important role in synergistically controlling cell proliferation, and expression is lost with increased prostate cancer cell transformation. Simultaneous administration of a potent vitamin D3 analog and receptor-selective retinoids may have therapeutic potential for the treatment of androgen-dependent and -independent prostate cancer.  相似文献   

8.
Recent studies have demonstrated the presence and the regulatory function of several neurotransmitters in the immune system. In the present study, we examined the presence of acetylcholine receptors, using pharmacological and molecular biological assays, and their transmembrane control and functions, using a biochemical assay, in a cloned human leukemic helper T lymphoma cell line, Jurkat. Several muscarinic agonists, such as acetylcholine, carbachol, muscarine, and oxotremorine-M (Oxo-M), at 100 microM caused a transient elevation of the free cytosolic Ca2+ concentration ([Ca2+]i), in contrast to the tonic elevation of [Ca2+]i induced by 10 micrograms/ml phytohemagglutinin (PHA). It appeared that the elevation induced by Oxo-M, the most potent [Ca2+]i elevator, was more effectively inhibited by p-fluorohexahydrosiladifenidol hydrochloride (p-F-HHSiD) and 4-diphenylacetoxy-N-methylpiperidine methiodine than by pirenzepine and 11-2[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido[2,3-b] [1,4]benzodiazepine-6-one (AF-DX 116), suggesting that a pharmacological M3 subtype of muscarinic receptors is involved in the elevation of [Ca2+]i. Northern blot analysis showed that the m3 type of receptors are expressed in Jurkat cells. Scatchard analysis of [3H]quinuclidinyl benzilate binding to intact cells indicated a Kd of 14.1 nM and a Bmax of 45,370 binding sites/cell. [3H]Quinuclidinyl benzilate binding to cell membranes was also inhibited by p-F-HHSiD rather than by pirenzepine and AF-DX 116. Oxo-M induced formation of inositol trisphosphate, and 5'-O-(2-thio)diphosphate inhibited the formation. Cholera toxin treatment inhibited the PHA-induced [Ca2+]i rise but did not affect the Oxo-M-induced rise. Neither pertussis nor butulinus (type C) toxin affected the rise induced by Oxo-M or PHA. Thus, bacterial toxin-insensitive GTP-binding proteins seem to be involved in the Oxo-M-induced increase in [Ca2+]i. Treatment with 12-O-tetradecanoylphorbol 13-acetate abolished the Oxo-M-induced [Ca2+]i rise but did not affect that induced by PHA. m3 Muscarinic receptors thus appear to cause Ca2+ mobilization from intracellular stores via bacteria toxin-insensitive GTP-binding proteins, phospholipase C activation, and inositol trisphosphate formation in Jurkat cells. Protein kinase C seems to negatively modulate the m3 receptor system.  相似文献   

9.
We have studied the in vitro biological activities and mechanisms of action of 1,25-dihydroxyvitamin D3 (1,25D3) and nine potent 1,25D3 analogs on proliferation and differentiation of myeloid leukemia cell lines (HL-60, retinoic acid-resistant HL-60 [RA-res HL-60], NB4 and Kasumi-1). The common novel structural motiff for almost all the analogs included removal of C-19 (19-nor); each also had unsaturation of the side chain. All the compounds were potent; for example, the concentration of analogs producing a 50% clonal inhibition (ED50) ranged between 1 x 10(-9) to 4 x 10(-11) mol/L when using the HL-60 cell line. The most active compound [1, 25(OH)2-16,23E-diene-26-trifluoro-19-nor-cholecalciferol (Ro 25-9716)] had an ED50 of 4 x 10(-11) mol/L; in contrast, the 1,25D3 produced an ED50 of 10(-9) mol/L with the HL-60 target cells. Ro 25-9716 (10(-9) mol/L, 3 days) was a strong inducer of myeloid differentiation because it caused 92% of the HL-60 cells to express CD11b and 75% of these cells to reduce nitroblue tetrazolium (NBT). This compound (10(-8) mol/L, 4 days) also caused HL-60 cells to arrest in the G1 phase of the cell cycle (88% cells in G1 v 48% of the untreated control cells). The p27(kip-1), a cyclin-dependent kinase inhibitor which is important in blocking the cell cycle, was induced more quickly and potently by Ro 25-9716 (10(-7) mol/L, 0 to 5 days) than by 1,25D3, suggesting a possible mechanism by which these analogs inhibit proliferation of leukemic growth. The NB4 promyelocytic leukemia cells cultured with the Ro 25-9716 were also inhibited in their clonal proliferation (ED50, 5 x 10(-11) mol/L) and their expression of CD11b was enhanced (80% positive [10(-9) mol/L, 4 days] v 27% untreated NB4 cells). Moreover, the combination of Ro 25-9716 (10(-9) mol/L) and all-trans retinoic acid (ATRA, 10(-7) mol/L) induced 92% of the NB4 cells to reduce NBT, whereas only 26% of the cells became NBT positive after a similar exposure to the combination of 1,25D3 and ATRA. Surprisingly, Ro 25-9716 also inhibited the clonal growth of poorly differentiated leukemia cell lines (RA-res HL-60 [ED50, 4 x 10(-9) mol/L] and Kasumi-1 [ED50, 5 x 10(-10) mol/L]). For HL-60 cells, Ro 25-9716 markedly decreased the percent of the cells in S phase of the cell cycle and increased the expression of the cyclin-dependent kinase inhibitor, p27(kip-1). In summary, 19-nor vitamin D3 compounds strongly induced differentiation and inhibited clonal proliferation of various myeloid leukemia cell lines, suggesting a therapeutic niche for their use in myeloid leukemia.  相似文献   

10.
Epidemiological and laboratory data support a role for vitamin D in the growth and differentiation of human prostatic cells. These findings prompted us to ask whether prostatic cells could convert 25-hydroxyvitamin D3 (25-OH-D3), the major circulating metabolite of vitamin D3, to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the hormonally active metabolite, in a manner similar to cultured human keratinocytes. Therefore, we investigated three well-characterized human prostate cancer cell lines, LNCaP, DU 145, and PC-3; two primary cultures of cells derived from noncancerous human prostates (one normal and one benign prostatic hyperplasia); and primary cultures of normal human keratinocytes for their ability to synthesize 1,25(OH)2D3. Assays were performed in the presence of 25-OH-D3 as the enzyme substrate and 1,2-dianilinoethane, an antioxidant and free radical scavenger, and in the presence and absence of clotrimazole, a cytochrome P450 inhibitor. DU 145 and PC-3 cells produced 0.31 +/- 0.06 and 0.07 +/- 0.01 pmol of 1,25(OH)2D3/mg protein/h, respectively. No measurable 1,25(OH)2D3 was detected in LNCaP cells. The normal and benign prostatic hyperplasia primary cultures and keratinocyte cultures produced 3.08 +/- 1.56, 1.05 +/- 0.31, and 2.1 +/- 0.1 pmol of 1,25(OH)2D3/mg protein/h, respectively, using a calf thymus receptor binding assay to measure 1,25(OH)2D3 in the presence of 1,2-dianilinoethane. The identity of the analyte as 1,25(OH)2D3 was supported by high performance liquid chromatography using [3H]25-OH-D3 as the enzyme substrate and a solvent system that is specific for 1,25(OH)2D3. The production of 1,25(OH)2D3 in the prostate cancer cell lines and in the primary cultures was completely inhibited in the presence of clotrimazole. This report demonstrates that two of three human prostate cancer cell lines, as well as primary cultures of noncancerous prostatic cells, possess 1alpha-hydroxylase activity and can synthesize 1,25(OH)2D3 from 25-OH-D3. Together with recent data indicating that 1,25(OH)2D3 inhibits the invasiveness of human prostate cancer cells (G. G. Schwartz et al., Cancer Epidemiol. Biomark. Prev., 6: 727-732, 1997), these data suggest a potential role for 25-OH-D3 in the chemoprevention of invasive prostate cancer.  相似文献   

11.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

12.
The commercial fungicide methyl 1-[(butylamino) carbonyl]-1H-benzimidazol-2-ylcarbamate (benomyl) is teratogenic in rats. Its mode of action is believed to be related to its ability to inhibit the polymerization of brain tubulin. In this study its effects were studied in cultured neuronal cells during differentiation and neurite outgrowth. Mouse NB2a and human SH-SY5Y neuroblastoma cells were induced to differentiate by addition of dibutyryl cyclic AMP and at the same time were exposed to various concentrations of benomyl. Benomyl significantly inhibited neurite outgrowth in both cell lines at concentrations of 10(-8) M and above with IC50 values of 5.9 x 10(-7) M and 1.0 x 10(-6) M in the NB2a and SH-SY5Y cells respectively. The results show that benomyl inhibits neuronal cell differentiation at concentrations likely to be achieved during the development of fetal abnormalities in rats in vivo.  相似文献   

13.
Bombesin (Bn) receptor subtype 3 (BRS-3) is an orphan receptor that is a predicted member of the heptahelical G-protein receptor family and so named because it shares a 50% amino acid homology with receptors for the mammalian bombesin-like peptides neuromedin B (NMB) and gastrin-releasing peptide. In a recent targeted disruption study, in which BRS-3-deficient mice were generated, the mice developed obesity, diabetes, and hypertension. To date, BRS-3's natural ligand remains unknown, its pharmacology unclear, and cellular basis of action undetermined. Furthermore, there are few tissues or cell lines found that express sufficient levels of BRS-3 protein for study. To define the intracellular signaling properties of BRS-3, we examined the ability of [D-Phe6,beta-Ala11,Phe13, Nle14]Bn-(6-14), a newly discovered peptide with high affinity for BRS-3, and various Bn receptor agonists and antagonists to alter cellular function in hBRS-3-transfected BALB 3T3 cells and hBRS-3-transfected NCI-H1299 non-small cell lung cancer cells, which natively express very low levels of hBRS-3. This ligand stimulated a 4-9-fold increase in [3H]inositol phosphate formation in both cell lines under conditions where it caused no stimulation in untransfected cells and also stimulated an increase in [3H]IP1, [3H]IP2, and 3H]IP3. The elevation of [3H]IP was concentration-dependent, with an EC50 of 20-35 nM in both cell lines. [D-Phe6,beta-Ala11,Phe13,Nle14]Bn-(6-14) stimulated a 2-3-fold increase in [Ca2+]i, a 3-fold increase in tyrosine phosphorylation of p125(FAK) with an EC50 of 0.2-0.7 nM, but failed to either stimulate increases in cyclic AMP or inhibit forskolin-stimulated increases. None of nine naturally occurring Bn peptides or three synthetic Bn analogues reported to activate hBRS-3 did so with high affinity. No high affinity Bn receptor antagonists had high affinity for the hBRS-3 receptor, although two low affinity antagonists for gastrin-releasing peptide and NMB receptors, [D-Arg1,D-Trp7,9, Leu11]substance P and [D-Pro4,D-Trp7,9,10]substance P-(4-11), inhibited hBRS-3 receptor activation. The NMB receptor-specific antagonist D-Nal,Cys,Tyr,D-Trp,Lys,Val, Cys,Nal-NH2 inhibited hBRS-3 receptor activation in a competitive fashion (Ki = 0.5 microM). Stimulation of p125(FAK) tyrosine phosphorylation by hBRS-3 activation was not inhibited by the protein kinase C inhibitor, GF109203X, or thapsigargin, alone or in combination. These results show that hBRS-3 receptor activation increases phospholipase C activity, which causes generation of inositol phosphates and changes in [Ca2+]i and is also coupled to tyrosine kinase activation, but is not coupled to adenylate cyclase activation or inhibition. hBRS-3 receptor activation results in tyrosine phosphorylation of p125(FAK), and it is not dependent on activation of either limb of the phospholipase C cascade. Although the natural ligand is not a known bombesin-related peptide, the availability of [D-Phe6,beta-Ala11, Phe13,Nle14]Bn-(6-14), which functions as a high affinity agonist in conjunction with hBRS-3-transfected cell lines and the recognition of three classes of receptor antagonists including one with affinity of 0.5 microM, should provide important tools to assist in the identification of its natural ligand, the development of more potent selective receptor antagonists and agonists, and further exploration of the signaling properties of the hBRS-3 receptor.  相似文献   

14.
A novel monoclonal antibody has been developed that reacts strongly with human prostatic cancer, especially tumors of high grade. This antibody (7E11C-5) is currently in Phase 3 trials as an imaging agent for metastatic disease. We have cloned the gene that encodes the antigen that is recognized by the 7E11C-5 monoclonal antibody and have designated this unique protein prostate-specific membrane (PSM) antigen. PSM antigen is a putative class II transmembranous glycoprotein exhibiting a molecular size of Mr 94,000. Functionally, class II membrane proteins serve as transport or binding proteins or have hydrolytic activity. Preliminary studies have demonstrated binding of pteroylmonoglutamate (folate) to membrane fractions that also cross-reacted with the PSM monoclonal antibody. We observed substantial carboxypeptidase activity as folate hydrolase associated with PSM antigen. The purpose of our study was to demonstrate that human prostatic carcinoma cells expressing PSM antigen exhibit folate hydrolase activity using methotrexate triglutamate (MTXGlu3) and pteroylpentaglutamate (PteGlu5) as substrates. Isolated membrane fractions from four human prostate cancer cell lines (LNCaP, PC-3, TSU-Prl, and Duke-145) were examined for folate hydrolase activity using capillary electrophoresis. After timed incubations at various pH ranges and in the presence and absence of thiol reagents, separation of pteroyl(glutamate)n derivatives was achieved with an electrolyte of sodium borate and SDS, while absorbance was monitored at 300 nm. The results demonstrate clearly that LNCaP cells, which highly express PSM, hydrolyze gamma-glutamyl linkages of MTXGlu3. The membrane-bound enzyme is an exopeptidase, because it progressively liberates glutamates from MTXGlu3 and PteGlu5 with accumulation of MTX and PteGlu1, respectively. The semipurified enzyme has a broad activity from pH 2.5 to 9.5 and exhibits activity maxima at pH 5 and 8. Enzymatic activity is maintained in the presence of reduced glutathione, homocysteine, and p-hydroxymercuribenzoate (0.05-0.5 mm) but was inhibited weakly by DTT (>/=0.2 mm). By contrast to LNCaP cell membranes, membranes isolated from other human prostate adenocarcinoma cells (PC-3, Duke-145, and TSU-Pr1) did not exhibit comparable hydrolase activity, nor did they react with 7E11-C5 monoclonal antibody. After transfection of PC-3 cells with a full-length 2.65-kb PSM cDNA subcloned into a pREP7 eukaryotic expression vector, non-PSM antigen-expressing PC-3 cells developed immunoreactivity to 7E11-C5 monoclonal antibody and demonstrated folate hydrolase activities and optimum pH activity profiles identical to those of LNCaP cells. The membrane-bound enzymes from both LNCaP- and PC-3-transfected cells also have a capacity to hydrolyze an alpha-linked glutamyl moiety from N-acetyl-alpha-aspartylglutamate. We have identified that PSM antigen is a pteroyl poly-gamma-glutamyl carboxypeptidase (folate hydrolase) and is expressed strongly in human prostate cancer. Cancer cells that express this enzyme are resistant to methotrexate therapy. Those developing future therapeutic strategies in the treatment of prostate cancer that utilize folate antagonists need to consider this mechanism of resistance.  相似文献   

15.
Bistratene A is a polyether which was isolated from the marine ascidian Lissoclinum bistratum Sluiter. The hypothesis has been tested that the cytostatic effect of bistratene A is mediated by modulation of protein kinase C (PKC). Human-derived A549 lung and MCF-7 breast adenocarcinoma cells are extremely sensitive to growth inhibition induced by activators of PKC. Therefore, the effect of bistratene A on these cell lines was compared with that of the known PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA). The ability of bistratene A to modulate PKC activity in cellular cytosol was assessed to determine the involvement of PKC in the induction of cytostasis. Bistratene A inhibited the growth of both cell lines and initial seeding density determined its cytostatic potency. IC50 values were between 1.0 and 2.9 nM. Bistratene A also had a profound effect on the colony forming ability of A549 cells, preventing clonal growth at 5 nM. Using the incorporation of [3H]thymidine into cells to assess DNA synthetic activity and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to define cytotoxicity, the compound was found to have both cytostatic and cytotoxic properties. Bistratene A decomposed by 50% after only 2.8 hr in cell culture medium. TPA induced rapid motility and the formation of a network of branched colonies in both cell lines grown on Matrigel, whereas bistratene A did not cause the same effect. Cell cytosol was analysed for phorbol ester binding sites after treatment with bistratene A or TPA. Incubation with TPA (10 nM) caused a reduction in binding sites to 57% of binding in control cells after 30 min and to 35% after 24 hr. Bistratene A did not cause a significant change in binding sites. Assays of PKC activity in cellular cytosol revealed that bistratene A was unable to activate or inhibit the enzyme at concentrations of up to 10 microM. The results suggest that bistratene A is an exquisitely potent cytostatic agent in the two cell lines studied, but modulation of PKC is not involved in the mode of action by which it elicits this effect.  相似文献   

16.
Transport of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) and (-)-norepinephrine was investigated in SarCNU-sensitive SK-MG-1 and -resistant SKI-1 human glioma cell lines. [3H]SarCNU influx was inhibited by SarCNU, sarcosinamide, and (+/-)-epinephrine in SK-MG-1 cells with competitive inhibition observed by (+/-)-epinephrine (Ki = 140 +/- 12 microM) and (+/-)-norepinephrine (Ki = 255 +/- 41 microM). No effect on influx was detected in SKI-1 cells. [3H](-)-Norepinephrine influx was linear to 15 sec in both cell lines and temperature dependent only in SK-MG-1 cells. Influx of [3H](-)-norepinephrine was found to be saturable in SK-MG-1 (K(m) = 148 +/- 28 microM, Vmax = 1.23 +/- 0.18 pmol/microL intracellular water/sec) but not in SKI-1 cells. In SK-MG-1 cells, [3H](-)-norepinephrine influx was found to be inhibited competitively by (-)-epinephrine (Ki = 111 +/- 7 microM) and SarCNU (Ki = 1.48 +/- 0.22 mM). Ouabain and KCl were able to inhibit the [3H](-)-norepinephrine influx in SK-MG-1 cells, consistent with influx being driven by membrane potential. Several catecholamine uptake2 inhibitors were able to reduce significantly the influx of [3H](-)-norepinephrine and [3H]SarCNU with no inhibition by a catecholamine uptake1 inhibitor. These findings suggest that increased sensitivity of SK-MG-1 to SarCNU is secondary to enhanced accumulation of SarCNU mediated via the catecholamine extraneuronal uptake2 transporter, which is not detectable in SKI-1 cells. The introduction of SarCNU into clinical trials will confirm if increased uptake via the catecholamine extraneuronal uptake2 transporter will result in increased antitumor activity.  相似文献   

17.
Neither the native ligand nor the cell biology of the bombesin (Bn)-related orphan receptor subtype 3 (BRS-3) is known. In this study, we used RT-PCR to identify two human lung cancer lines that contain sufficient numbers of native hBRS-3 to allow study: NCI-N417 and NCI-H720. In both cell lines, [DPhe6,betaAla11,Phe13, Nle14]Bn(6-14) stimulates [3H]inositol phosphate. In NCI-N417 cells, binding of 125I-[DTyr6,betaAla11,Phe13,Nle14]Bn(6-14) was saturable and high-affinity. [DPhe6,betaAla11,Phe13,Nle14]Bn(6-14) stimulated phospholipase D activity and a concentration-dependent release of [3H]inositol phosphate (EC50 = 25 nM) and intracellular calcium (EC50 = 14 nM); the increases in intracellular calcium were primarily from intracellular stores. hBRS-3 activation was not coupled to changes in adenylate cyclase activity, [3H]-thymidine incorporation or cell proliferation. No naturally occurring Bn-related peptides bound or activated the hBRS-3 with high affinity. Four different bombesin receptor antagonists inhibited increases in [3H]inositol phosphate. Using cytosensor microphysiometry, we found that [DPhe6,betaAla11,Phe13, Nle14]Bn(6-14) caused concentration-dependent acidification. The results show that native hBRS-3 receptors couple to phospholipases C and D but not to adenylate cyclase and that they stimulate mobilization of intracellular calcium and increase metabolism but not growth. The discovery of human cell lines with native, functional BRS-3 receptors, of new leads for a more hBRS-3-specific antagonist and of the validity of microphysiometry as an assay has yielded important tools that can be used for the identification of a native ligand for hBRS-3 and for the characterization of BRS-3-mediated biological responses.  相似文献   

18.
19.
To examine the effects of hyperglycemia on insulin signaling in A-10 vascular smooth muscle cells, cells were treated with extracellular D-glucose and effects of insulin were studied on the diacylglycerol-protein kinase C signaling system. A-10 cells specifically bound 125I-insulin, and insulin-like growth factor-I did not displace the label. 125I-insulin binding was unaltered under hyperglycemic conditions. To determine if insulin receptors were coupled to other insulin-regulated processes, diacylglycerol, protein kinase C, and glucose transport were evaluated. Insulin increased cellular diacylglycerol (DAG) levels which were also increased following glucose treatment and not further stimulated by insulin. The uptake of 2-[3H]deoxy-D-glucose (2-DOG) was stimulated by insulin and 12-O-tetradecanoyl phorbol 13-acetate (TPA). Insulin- and TPA-stimulated 2-[3H]DOG uptake was inhibited by a protein kinase inhibitor, staurosporine. Preincubation of cells with 500 nM TPA overnight resulted in the inhibition of insulin- and TPA-stimulated 2-[3H]DOG uptake. Protein kinase C activity was translocated from cytosolic to membrane fractions following insulin treatment. Overnight glucose (25 mM) treatment resulted in a 50% decrease in protein kinase C enzyme activity and > 90% decrease in protein kinase C beta immunoreactive levels. Protein kinase C activity and levels were not affected by osmotic control media containing mannitol. A-10 cells express GLUT4-type glucose transporters. Neither insulin-regulatable glucose transporter (GLUT4) mRNA nor GLUT4 protein levels were diminished by glucose. Significant decreases in insulin- and TPA-stimulated 2-[3H]DOG uptake occurred, however, with glucose. The down-regulation of protein kinase C beta and resultant inhibition of 2-[3H]DOG uptake by chronic glucose suggests a biochemical link between hyperglycemia and DAG-protein kinase C signaling in vascular smooth muscle cells.  相似文献   

20.
To initiate delayed neuropathy (DN) in adult hens organophosphates and phosphonates must inhibit most neural NTE and the inhibited NTE must undergo an 'aging' reaction. Phosphinates and those chiral isomers of phosphonates which produce non-aging NTE do not cause DN but act as prophylactic agents. Some racemic phosphoramidates cause DN although the inhibited NTE in autopsy samples can be reactivated in vitro (Johnson, Read and Vilanova, 1991, Arch. Toxicol., 65, 618-624). We now report that pure R(+)isomer of O-n-hexyl S-methyl phosphorothioamidate (5-20 mg/kg per os) caused slight acute effects but typical DN associated with high inhibition of NTE in brain, spinal cord and sciatic nerve (maximum by 6-24 h): the inhibited NTE was easily reactivated by KF (presumed not aged). For each dose the average residual NTE activity in the three tissues 24 h after dosing and the clinical ataxia severity on peak days 15-17 (score out of 4) was: 5 mg/kg: 13, 14, 27% (2,2,2,1); 10 mg/kg: 10, 14, 12%, (4,3,2); 15 mg/kg: 10,11,17%, (3,3,4); 20 mg/kg: 6, 10, 8% (3,3,3,2). The ability of this isomer and of other racemic phosphoramidates to initiate DN by covalent reaction at the active site of NTE (inhibition) without subsequent aging suggests that the chemistry (? charge distribution) in the region of the phosphorus atom determines that disturbance in the molecular environment of NTE which initiates DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号