首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Using a recently developed procedure combining isothermal and nonisothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the nonisothermal measurements appeared a broad peak (40/spl deg/C to 50/spl deg/C) that was possible to decompose into two or three peaks (35, 45 and 65/spl deg/C). At even higher temperature another peak was sometimes present (85/spl deg/C) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of /spl ap/15 /spl mu/m). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the nonisothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.  相似文献   

2.
The outstanding space charge storage stability of porous polytetrafluoroethylene (PTFE) film electrets is studied by isothermal surface potential decay measurements and open-circuit thermally stimulated discharge (TSD) experiments after corona charging at room and elevated temperatures, or corona charging at RT and then aging at different temperatures. Charge storage properties of porous PTFE, nonporous PTFE (Teflon/spl reg/ PTFE) and nonporous FEP (Teflon/spl reg/ FEP) electrets are compared. The results show that porous PTFE has the best charge storage stability of organic materials for both negative and positive charges, especially at high temperatures. The structure of porous PTFE, investigated by a scanning electron microscope (SEM), is important for understanding the electret properties of this material. Charge dynamics, including the influence of environmental humidity and temperature on charge stability and shift of mean charge depth, and the kinetics of detrapped charges for the porous PTFE film electrets were also investigated by means of isothermal surface potential decay measurements and analysis of the TSD current spectra in combination with the heat pulse technique. It is found that from about RT to 200/spl deg/C slow retrapping plays a dominant role; from about 200/spl deg/C to 300/spl deg/C fast retrapping controls the transport.  相似文献   

3.
By sequential use of the isothermal charging, the isothermal discharging, the final thermally stimulated discharge current and the final isothermal discharging current techniques, the charge dynamics in highly insulating materials may be investigated. The method is demonstrated for polyethylene terephthalate. The injected charge for a field of 20 MV m/sup -/1 and polarization temperatures up to 110/spl deg/C is almost totally trapped in the material and is released during the heating of the sample at 180/spl deg/C for a sufficiently long time. A significant current at high temperatures, about 90/spl deg/C above the poling temperature, was observed proving that it originates from charge detrapping. The final thermally stimulated discharge current peaks shift to higher temperature when the polarization temperature increases, and are characterized by activation energies in the range from 1.03 to 1.56 eV. They allowed the identification of the glass transition around 114/spl deg/C. The relaxation time of the trapped charge, at 180/spl deg/C, was determined to be about 3780 s, explaining the very good stability of trapped charge.  相似文献   

4.
Electrical conductivity (DC) and space charge accumulation were studied in samples of low density polyethylene to which nano-sized and micro-sized TiO/sub 2/ (anatase) particles and a dispersant had been added. Sample thicknesses were in the range 150-200 /spl mu/m. At applied field strengths of 10 and 20 kV/mm, the conductivity at 30 /spl deg/C, measured in vacuum in samples containing 10 % w/w nano-sized TiO/sub 2/, decreased by 1-2 orders of magnitude relative to samples with dispersant but without TiO/sub 2/, and by three orders of magnitude at 70 /spl deg/C. In air at 30 /spl deg/C the corresponding decrease was an order of magnitude at 10 kV/mm, and a factor of four at 20 kV/mm. In samples containing 10 % w/w micro-sized TiO/sub 2/ the conductivity increased in air and in vacuum, but only by factors in the range 2-10 depending on temperature and field. Space charge profiles were obtained using the laser-intensity-modulation-method (LIIMM), irradiating both surfaces of the sample. The micro-sized TiO/sub 2/ particles are associated with increased charge injection from the electrodes and increased charge trapping in the sample bulk, increasing the conductivity overall. The nano-sized particles generate very little charge in the sample bulk, but render the electrodes partially-blocking and so lower the conductivity.  相似文献   

5.
1.3- and 1.55-/spl mu/m vertical-cavity surface-emitting lasers (VCSELs) on InP have been realized. High-reflectivity AlGaInAs-InP lattice matched distributed Bragg reflectors (DBRs) were grown on InP substrates. 1.7 (for 1.3 /spl mu/m) and 2.0 (for 1.55 /spl mu/m) mW single mode power at 25/spl deg/C, 0.6 mW single mode power at 85/spl deg/C and lasing operation at >100/spl deg/C have been achieved. 10 Gbit/s error free transmissions through 10 km standard single mode fiber for 1.3-/spl mu/m VCSELs, and through 15 km nonzero dispersion shift fiber for 1.55-/spl mu/m VCSELs, have been demonstrated. With the addition of an SOA, 100 km error free transmission at 10 Gbit/s also has been demonstrated through a negative dispersion fiber. No degradation has been observed after over 2500-h aging test.  相似文献   

6.
We have investigated the thermally stimulated current (TSC) in low-density polyethylene (LDPE) film and surface potentials built in the LDPE films due to excess charges injected from a needle electrode, using 10, 15 and 20 needle-plane electrode systems. The amount of charge injected and its depth were determined from TSC and thermally stimulated surface potential (TSSP) measurements  相似文献   

7.
By utilizing the laser induced pressure-pulse (LIPP) technique, the behavior of space charge in low-density polyethylene (LDPE) and crosslinked polyethylene (XLPE) films in contact with metal or carbon-loaded semiconducting layers was studied quantitatively to clarify the space-charge characteristics in power cables. Negative heterospace charge near the anode and positive space charge in the bulk were observed in unoxidized LDPE under the fields above 120 kV/mm. The amount of negative space charge increased with applied field, while positive space charge in the bulk disappeared with increasing applied field. This indicates that electron injection and ionization are enhanced by applied field. Prominent negative homospace charge was formed near the cathode in oxidized LDPE, which indicates that oxidation enhanced electron injection. The depth of charge centroid from the cathode became larger with increasing temperature. This indicates that the effective electron mobility increases with temperature. Negative space charge also was formed in the bulk in XLPE films with metal electrodes, which indicates that crosslinking enhanced electron injection. XLPE films with a carbon-loaded semiconducting layer showed both negative and positive homospace charges near the semiconducting layers, which indicates that both electrons and holes were injected from the semiconducting layer.  相似文献   

8.
Outgassing from an electrode surface is regarded as a major factor leading to electrical breakdowns in vacuum. Recently oxidation treatment at 200/spl deg/C was reported as an effective means of reducing Ti outgassing. In this paper, we report our measurement and comparison of the electrical breakdown characteristics of Ti electrodes with different oxidation conditions (without oxidation, oxidation at 200/spl deg/C, oxidation at 450/spl deg/C). In addition, we analyzed electrode surfaces before and after breakdown experiments in situ with X-ray photoelectron spectroscopy (XPS). Before oxidation, we machined the electrode's surfaces to the roughness of 0.8 /spl mu/m Rmax with diamond turning. Breakdown experiments demonstrated that the breakdown field is highest at the first application of voltage to electrodes with oxidized at 200/spl deg/C. Before breakdown experiment, surface analysis revealed that all the sample electrodes had a large amount of carbon originating from the hydrocarbons of contaminants, and after the experiments, they revealed that the carbons had disappeared. To obtain breakdown characteristics of electrodes with smoother surfaces, we conducted experiments on electrodes with a surface roughness of 0.05 /spl mu/m Ra. For these electrodes, the breakdown field was higher at first breakdown; the repetitions required to achieve saturated breakdown fields were significantly fewer, and the amount of carbon on electrode surfaces before breakdown was less.  相似文献   

9.
Quantum-dot gain material fabricated by self-organized epitaxial growth on GaAs substrates is used for the realization of 980-nm and 1.3-/spl mu/m single-mode distributed feedback (DFB) lasers and edge-emitting microlasers. Quantum-dot specific properties such as low-threshold current, broad gain spectrum, and low-temperature sensitivity could be demonstrated on ridge waveguide and DFB lasers in comparison to quantum-well-based devices. 980-nm DFB lasers exhibit stable single-mode behavior from 20/spl deg/C up to 214/spl deg/C with threshold currents < 15 mA (1-mm cavity length). Utilizing the low-bandgap absorption of quantum-dot material miniaturized monolithically integrable edge-emitting lasers could be realized by deeply etched Bragg mirrors with cavity lengths down to 12 /spl mu/m. A minimum threshold current of 1.2 mA and a continuous-wave (CW) output power of >1 mW was obtained for 30-/spl mu/m cavity length. Low-threshold currents of 4.4 mA could be obtained for 1.3-/spl mu/m emitting 400-/spl mu/m-long high-reflection coated ridge waveguide lasers. DFB lasers made from this material by laterally complex coupled feedback gratings show stable CW single-mode emission up to 80/spl deg/C with sidemode suppression ratios exceeding 40 dB.  相似文献   

10.
Alumina ceramic samples prepared under different sintering temperatures and varied additives were measured to indicate the trap density and trap energy located in alumina materials by using thermally stimulated current (TSC). The surface charges on alumina in vacuum after applying a negative pulse voltage (0.7/4 /spl mu/s), and flashover performances of the materials in vacuum also were measured. We found that the trap distribution in alumina has a correlation with surface charges and flashover performances in vacuum. It is shown that the higher is the trap density in the material, the higher is the surface charge density, and the lower is the flashover voltage on alumina surface. It is believed that the trapping and de-trapping mechanisms of carriers could play an important role during the development of the discharge processes, together with the secondary electron emission mechanism.  相似文献   

11.
The 1.27-/spl mu/m InGaAs:Sb-GaAs-GaAsP vertical cavity surface emitting lasers (VCSELs) were grown by metalorganic chemical vapor deposition and exhibited excellent performance and temperature stability. The threshold current varies from 1.8 to 1.1 mA and the slope efficiency falls less than /spl sim/35% from 0.17 to 0.11 mW/mA as the temperature is raised from room temperature to 75/spl deg/C. The VCSELs continuously operate up to 105/spl deg/C with a slope efficiency of 0.023 mW/mA. With a bias current of only 5 mA, the 3-dB modulation frequency response was measured to be 8.36 GHz, which is appropriate for 10-Gb/s operation. The maximal bandwidth is estimated to be 10.7 GHz with modulation current efficiency factor of /spl sim/5.25GHz/(mA)/sup 1/2/. These VCSELs also demonstrate high-speed modulation up to 10 Gb/s from 25/spl deg/C to 70/spl deg/C. We also accumulated life test data up to 1000 h at 70/spl deg/C/10 mA.  相似文献   

12.
In this study, laser reshaping of porcine septal cartilage was performed using an Nd:YAG laser (/spl lambda/=1.32 /spl mu/m), while changes in acoustic waves were observed, in an attempt to develop technique to monitor the reshaping process. Concurrent measurements of strain (during tensile compression and tension, as well as flexure), temperature, and a 5-MHz ultrasonic signal were recorded during laser irradiation (/spl lambda/=1.32 /spl mu/m, 4 W, 13 s). The sample was set up in a water bath to enhance acoustic coupling. From the ultrasonic signal, both time of flight (TOF) and signal amplitude as reflected from the back wall of the cartilage were extracted and correlated with temperature and strain measurements. The onset of stress relaxation of the cartilage generally occurred between 50/spl deg/C and 60/spl deg/C. While TOF measurements indicated a generally constant increase in the speed of sound of the cartilage during the irradiation period, the amplitude of the reflected acoustic signal correlated directly with the stress relaxation of the cartilage. At the point of stress relaxation, the amplitude of the acoustic signal consistently attenuated to roughly 50% of its original magnitude.  相似文献   

13.
Surface acoustic wave (SAW) filters for low-frequency (38-65 MHz) applications have been developed using a radio frequency (RF)-magnetron-sputtered ZnO film on fused-quartz substrates. SAW propagation characteristics such as electromechanical coupling coefficient (K/sup 2/), SAW phase velocity (v), insertion loss, and temperature coefficient of delay (TCD) have been measured. The intergidital transducer (IDT)/ZnO/fused-quartz device structure yields almost zero TCD (1 ppm/spl middot//spl deg/C/sup -1/) with 0.316 /spl lambda/ thick ZnO layer (for the device operating at 60 MHz). Alternately, an overlayer of positive TCD material (ZnO itself) has also been deposited on the IDT/ZnO(<0.316 /spl lambda/)/fused-quartz device at a low substrate temperature to reduce the TCD. A modified layered structure consisting of ZnO/IDT/ZnO/fused quartz yields almost zero TCD (-3 ppm/spl middot//spl deg/C/sup -1/) with a 5.3-/spl mu/m-thick ZnO overlayer and a 8.1-/spl mu/m-thick (0.183 /spl lambda/) ZnO bottom layer. Experimentally obtained SAW propagation characteristics have been compared with the theoretical results.  相似文献   

14.
We investigate the reliability of pFET-based EEPROMs with 70-/spl Aring/ tunneling oxides fabricated in standard foundry 0.35-/spl mu/m, 0.25-/spl mu/m, and 0.18-/spl mu/m logic CMOS processes. The floating-gate memory cell uses Fowler-Nordheim tunneling erase and impact-ionization generated hot-electron injection for programming. We show that charge leakage is dominated by the leakage through interlayer dielectrics. We propose a retention model and show the data retention lifetime exceeds 10 years. These results demonstrate the feasibility of producing nonvolatile memory using standard logic processes that have a 70-/spl Aring/ oxide.  相似文献   

15.
Extruded films prepared from blends of low-density polyethylene (LDPE) and random copolymer of ethylene and propylene (EP) with the T-die method were studied with respect to electrical properties and morphology. Comparisons with data on blown films are made. These blends are of interest as improved LDPE for making XLPE for insulated power cable. In the high temperature region (90/spl deg/C), a specimen with a slightly higher EP content had higher impulse breakdown strength than that with a lower EP content, but no improvement of DC breakdown strength by blending could be found. The improvement of impulse breakdown strength (90/spl deg/C) is explained in terms of morphological changes by blending such as the orientation of chains in a film and the size of spherulites on the assumption of the thermal breakdown. In comparison, a T-die film had higher impulse breakdown strength than that of a blown film for the same composition. The impulse breakdown strength also increased with the use of the higher density LDPE. In the current versus electric field characteristics at 30/spl deg/C, the blend polymer with EP content of 5-10% showed a transition from LDPE behavior at low field region to EP behavior at high field region. However, no appreciable difference in current behavior among the specimens was observed at 90/spl deg/C, which suggests an incompatibility between the two materials that exists at 30/spl deg/C but not at 90/spl deg/C.  相似文献   

16.
Optical imaging of objects within highly scattering media, such as tissue, requires the detection of ballistic/quasi-ballistic photons through these media. Recent works have used phase/coherence domain or time domain tomography (femtosecond laser pulses) to detect the shortest path photons through scattering media. This work explores an alternative, angular domain imaging, which uses collimation detection capabilities of small acceptance angle devices to extract photons emitted aligned closely to a laser source. It employs a high aspect ratio, micromachined collimating detector array fabricated by high-resolution silicon surface micromachining. Consider a linear collimating array of very high aspect ratio (200: 1) containing 51/spl times/1000 /spl mu/m etched channels with 102-/spl mu/m spacing over a 10-mm silicon width. With precise array alignment to a laser source, unscattered light passes directly through the channels to the charge coupled device detector and the channel walls absorb the scattered light at angles >0.29/spl deg/. Objects within a scattering medium were scanned quickly with a computer-controlled Z axis table. High-resolution images of 100-/spl mu/m-wide lines and spaces were detected at scattered-to-ballistic ratios of 5/spl times/10/sup 5/: 1, with objects located near the middle of the sample seen at even higher levels. At >5/spl times/10/sup 6/: 1 ratios, a uniform background of scattered illumination degrades the image contrast unless recovered by background subtraction. Monte Carlo simulation programs designed to test the angular domain imaging concept showed that the collimator detects the shortest path length photons, as in other optical tomography methods. Furthermore, the collimator acts as an optical filter to remove scattered light while preserving the image resolution. Simulations suggest smaller channels and longer arrays could enhance detection by >100.  相似文献   

17.
Recent progress in semiconductor quantum-dot (QD) lasers approaches qualitatively new levels, when dramatic progress in the development of the active medium already motivates search for new concepts in device and system designs. QDs, which represent coherent inclusions of narrower bandgap semiconductor in a wider gap semiconductor matrix, offer a possibility to extend the wavelength range of heterostructure lasers on GaAs substrates to 1.3 /spl mu/m and beyond and create devices with dramatically improved performance, as compared to commercial lasers on InP substrates. Low-threshold current density (100 A/cm/sup 2/), very high characteristic temperature (170 K up to 65/spl deg/C), and high differential efficiency (85%) are realized in the same device. The possibility to stack QDs (e.g., tenfold) without an increase in the threshold current density and any degradation of the other device parameters allow realization of high modal gain devices suitable for applications in 1.3-/spl mu/m short-cavity transmitters and vertical-cavity surface-emitting lasers (VCSELs). The 1.3-/spl mu/m QD GaAs VCSELs operating at 1.2-mW continuous-wave output power at 25/spl deg/C are realized, and long operation lifetime is manifested. Evolution of GaAs-based 1.3-/spl mu/m lasers offers a unique opportunity for telecom devices and systems. Single-epitaxy VCSEL vertical integration with intracavity electrooptic modulators for lasing wavelength adjustment and/or ultrahigh-frequency wavelength modulation is possible. Arrays of wavelength-tunable VCSELs and wavelength-tunable resonant-cavity photodetectors may result in a new generation of "intelligent" cost-efficient systems for ultrafast data links in telecom.  相似文献   

18.
In order to investigate transient space charge phenomena, it is essential that the space charge profile be observed at a high repetition rate. We have developed a new space charge measurement system using the pulsed electroacoustic (PEA) method, which can measure the space charge profiles every 10 /spl mu/s. It employs the most recent digitising oscilloscope model and a semiconductor switch. The effect of prestressing on impulse breakdown voltage of a low-density polyethylene sheet was investigated by using the new system. Experimental results suggest that positive charge injection was dominant immediately before the breakdown, and charge injection during the prestressing causes distortion of the electric field near the electrode, and enhances the subsequent charge injection due to the impulse voltage.  相似文献   

19.
The accumulation of space charge in XLPE (cross-linked polyethylene), cross-linked using DCP (dicumyl peroxide) or a silane-based grafting process, was studied via the LIPP (laser-induced-pressure-pulse) technique. Planar samples 0.5 mm thick were obtained from the XLPE insulation of power distribution cables. DC fields to 10 kV/mm were applied at temperatures in the range 20 to 90°C. Usually the DCP samples developed heterocharge, and the silane samples homocharge. However, the observed space charge densities were not very different. Nearly all of the charge accumulated within 100 μm of each electrode, with very little in the remainder of the volume. Both sample types showed a near-perfect inversion of the equilibrium space charge profiles on reversing the applied voltage polarity. This observation is explained in terms of charge injection at the electrodes, electron transfer between electrode and XLPE in either direction involving the same narrow `window' of combined donor and acceptor states in the insulator, centered on the Fermi level  相似文献   

20.
We report the device characteristics of stacked InAs-GaAs quantum dot (QD) lasers cladded by an Al/sub 0.4/Ga/sub 0.6/As layer grown at low temperature by metal-organic chemical vapor deposition. In the growth of quantum dot lasers, an emission wavelength shifts toward a shorter value due to the effect of postgrowth annealing on quantum dots. This blueshift can be suppressed when the annealing temperature is below 570/spl deg/C. We achieved 1.28-/spl mu/m continuous-wave lasing at room temperature of five layers stacked InAs-GaAs quantum dots embedded in an In/sub 0.13/Ga/sub 0.87/As strain-reducing layer whose p-cladding layer was grown at 560/spl deg/C. From the experiments and calculations of the gain spectra of fabricated quantum dot lasers, the observed lasing originates from the first excited state of stacked InAs quantum dots. We also discuss the device characteristics of fabricated quantum dot lasers at various growth temperatures of the p-cladding layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号