首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
This paper proposes a method for fast and accurate detection of broken rotor bars (BRBs) in a three-phase squirrel cage induction motor. The fundamental component of the stator current signal is extracted using a linear time-invariant filter. The resultant residual signal which contains the harmonic components of the current is then used to detect the BRBs, by means of discrete wavelet transform (DWT). Since in experiment it is not possible to break the rotor bars while the motor is under load, finite element method and MATLAB/Simulink are employed to accurately demonstrate the behavior of the running machine as the BRB happens. To get more accuracy, differential evolution (DE) optimization algorithm is used to obtain the corresponding fault impedance for the rotor external circuit of the MATLAB model. Detail coefficients (DCs) of the wavelet decomposition are employed as the new fault indicators. Simulation results show that using DCs of the harmonic component signal rather than the actual current signal, leads to more distinctive fault signatures in the wavelet decomposition. The obtained results suggest that the proposed fault detection scheme can be employed as a highly reliable technique for diagnosing rotor bar failures in running machines.  相似文献   

2.
We propose a methodology for testing the sanity of motors when both healthy and faulty data are unavailable. More precisely, we consider a model-based Support Vector Classification (SVC) method for the detection of broken bars in three phase asynchronous motors at full load conditions, using features based on the spectral analysis of the stator's steady state current (more specifically, the amplitude of the lift sideband harmonic and the amplitude at fundamental frequency). We diverge from the mainstream focus on using SVCs trained from measured data, and instead derive a classifier that is constructed entirely using theoretical considerations. The advantage of this approach is that it does not need training steps (an expensive, time consuming and often practically infeasible task), i.e., operators are not required to have both healthy and faulty data from a system for checking it. We describe what are the theoretical properties and fundamental limitations of using model based SVC methodologies, provide conditions under which using SVC tests is statistically optimal, and present some experimental results to prove the effectiveness of the suggested scheme.  相似文献   

3.
The motor is the workhorse of industry. The issues of preventive and condition-based maintenance, on-line monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This paper introduces fault detection for induction motors. Stator currents are measured by current meters and stored by time domain. The time domain is not suitable for representing current signals, so the frequency domain is applied to display signals. The Fourier transform is employed to convert signals. After signal conversion, signal features must be extracted by signal processing such as wavelet and spectrum analysis. Features are entered in a pattern classification model such as a neural network model, a polynomial neural network, or a fuzzy inference model. This paper describes fault detection results that use Fourier and wavelet analysis. This combined approach is very useful and powerful for detection signal features.This work was presented in part at the 9th International Symposium on Artificial Life and Robotics, Oita, Japan, January 28–30, 2004This work has been supported by “Research Center for Future Logistics Information Technology” hosted by the Ministry of Education in Korea.  相似文献   

4.
In this paper, a hybrid soft computing model comprising the Fuzzy Min-Max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis is described. Specifically, the hybrid model, known as FMM-CART, is used to detect and classify fault conditions of induction motors in both offline and online environments. A series of experiments is conducted, whereby the Motor Current Signature Analysis (MCSA) method is applied to form a database containing stator current signatures under different motor conditions. The signal harmonics from the power spectral density (PSD) are extracted, and used as the discriminative input features for fault classification with FMM-CART. Three main induction motor conditions, viz. broken rotor bars, stator winding faults, and unbalanced supply, are used to evaluate the effectiveness of FMM-CART. The results indicate that FMM-CART is able to detect motor faults in the early stage, in order to avoid further damage to the induction motor as well as the overall machine or system that uses the motor in its operations.  相似文献   

5.
Causal fault detection and isolation based on a set-membership approach   总被引:1,自引:0,他引:1  
Ioana  Stphane  Sylviane 《Automatica》2004,40(12):2099-2110
This paper presents a diagnostic methodology relying on a set-membership approach for fault detection and on a causal model for fault isolation. Set-membership methods are a promising approach to fault detection because they take into account a priori knowledge of model uncertainties and measurement errors. Every uncertain model parameter and/or measurement is represented by a bounded variable. In this paper, detection consists of verifying the membership of measurements to an interval. First order discrete time models are used and their output is explicitly computed with interval arithmetic. Fault isolation relies on a causal analysis and the exoneration principle, which allows focusing the consistency tests on simple local models. The isolation strategy consists of two steps: performing minimal tests found with the causal graph and determining on line additional relevant tests that reduce the final diagnosis. An application for a nuclear process is used in order to illustrate the method's efficiency.  相似文献   

6.
This paper describes an approach for detection of the supply unbalance condition in induction motors by using data mining process. Simulation results have shown that a good indicator of the fault is the amplitude of the second harmonic of the supply frequency component (2f) in the signal obtained by the differences in supply current zero crossing instants. In the study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5’Rules, KStar, additive regression and back propagation neural network (BPNN) models are applied within the data mining process for determining the condition of the motor supply voltage. All data mining algorithms were applied using WEKA software. The best result for the determination of the fault related dominant parameter was obtained by using the M5P algorithm model.  相似文献   

7.
In this paper, we propose and implement a decision-level fusion model by combining the information of multi-level wavelet decomposition for fault diagnosis of induction motor using transient stator current signal. Firstly, the start-up transient current signals are collected from different faulty motors. Then signal preprocessing is conducted containing smoothing and subtracting to reduce the influence of line frequency in transient current signals. Next, we employ discrete wavelet transform technique to decompose the preprocessed signals into different frequency ranges of products, and then features are extracted from decomposed detail components. Finally, two decision-level fusion strategies, Bayesian belief fusion and multi-agent fusion, are employed. That is, fault features are classified using several classifiers and generated decisions are fused using a specific fusion algorithm. The proposed approach is evaluated by an experiment of fault diagnosis for induction motors. Experiment results show that excellent diagnosis performance can be obtained.  相似文献   

8.
Multirate systems are abundant in industry. In this paper, the problem studied is designing a residual generator for fault detection based on multirate sampled data. The key new feature of such a residual generator is that it operates at a fast rate for prompt fault detection. The design is based on optimizing a performance index to obtain an optimal parity space based residual generator. The lifting technique is used to convert the time-varying multirate design problem into a time-invariant one with a causality constraint for implementability. A procedure for computing an explicit optimal, causal solution is proposed. The advantages of this design are shown through an example.  相似文献   

9.
Active fault detection facilitates determination of the fault characteristics by injecting proper auxiliary input signals into the system. This article proposes an observer‐based on‐line active fault detection method for discrete‐time systems with bounded uncertainties. First, the output including disturbances, measurement noise and interval uncertainties at each sample time is enclosed in a zonotope. In order to reduce the conservativeness in the fault detection process, a zonotopic observer is designed to estimate the system states allowing to generate the output zonotopes. Then, a proper auxiliary input signal is designed to separate the output zonotopes of the faulty model from the healthy model that is injected into the system to facilitate the detection of small fault . Since the auxiliary input signal generation leads to a nonconvex optimization problem, it is transformed into a mixed integer quadratic programming problem. Finally, a case study based on a DC motor is used to show the effectiveness of the proposed method.  相似文献   

10.
Process fault detection based on modeling and estimation methods—A survey   总被引:1,自引:0,他引:1  
Rolf Isermann 《Automatica》1984,20(4):387-404
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号