首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental and theoretical analysis of the gain dynamics of all-optically stabilized multichannel erbium-doped fiber amplifier (EDFA) and the impact on wavelength division multiplexed (WDM) networks performance requirements is presented. In particular, we focus on precise analysis of the detailed transient response of the surviving channel and the relaxation oscillations of the compensating (lasing) signal. The main objective of this work is to experimentally and theoretically analyze and examine some of the critical factors such as, lasing wavelength, gain recovery time, relaxation oscillation frequency of the feedback loop, and the number of channels dropped/added, that affect the transient power excursions in the surviving channel. First, we consider the applicability of laser automatic gain control (AGC) to control fast power transients in WDM optical networks and reports the first high resolution measurements of transients in such gain controlled EDFAs. Second, the experimental results are compared with those predicted from a numerical simulation of the dynamic of the gain controlled EDFA  相似文献   

2.
A serious problem facing wavelength-division multiplexed (WDM) networks with fiber amplifier cascades is transient cross-gain saturation or gain dynamics of fiber amplifiers. Attention has been focused primarily on circuit-switched scenarios. When the number of WDM channels transmitted through a circuit-switching network varies, channel addition/removal will tend to perturb signals at the surviving channels that share all or part of the route. Even more serious bit error rate deterioration can arise in WDM packet switched burst mode networks. In this paper, we present experimental and theoretical results demonstrating the effect of fast power transients in erbium-doped fiber amplifiers (EDFAs) on packetized traffic transmitted through a chain of five EDFAs. Traffic of a local-area network has been transmitted over three channels. The effect of EDFA cross-gain saturation due to the burstiness of the traffic has been observed in a continuous-wave monitoring channel. The stabilizing effect of gain clamping of the first EDFA in the cascade has been investigated. The experimental results are extended to eight-channel WDM system using a large signal numerical analysis  相似文献   

3.
Software-defined networking is enabling wavelength-division multiplexed (WDM) networks to be programmable down to individual components. While taking into account typical gain and noise figure profiles of erbium-doped fiber amplifier (EDFA) components, the authors consider a number of signal power control strategies and compare their performance in terms of achievable lightpath optical signal-to-noise ratio (OSNR). These strategies are applied network-wide to concurrently control the gain of each individual amplifier and the signal power equalization at each reconfigurable optical add/drop multiplexer. Simulation and (in part) experimental results show that the lightpath OSNR is affected by three factors: the EDFA gain control strategy, power equalization strategy and wavelength assignment (WA) algorithm. A trade-off between lightpath average OSNR and OSNR variance across the WDM channels is also noted. Experimental work is conducted using a five-node meshed WDM network testbed proving both feasibility and effectiveness of a coordinated use of signal power control strategies and WA algorithms.  相似文献   

4.
We demonstrate an erbium-doped fiber amplifier (EDFA) that has a flat-gain spectrum over an 18-nm band and a constant per-channel output power regardless of the input powers and the number of channels. The gain flatness and the constant output are obtained by changing the laser diode pump power and the attenuation of the voltage-controlled attenuator (VCA) dynamically. The response times of pump control circuit and attenuator control circuit are 650 ns and 9 ms, respectively. The power excursion of surviving channel in an EDFA with fast control circuit is ~1% of that without fast control circuit when channels are added or dropped  相似文献   

5.
A long-wavelength-band erbium-doped fiber amplifier (L-band EDFA) using a pump wavelength source of 1540-nm band has been extensively investigated from a small single channel input signal to high-power wavelength division multiplexing (WDM) signals. The small-signal gain coefficient of 1545-nm pumping among the 1540-nm band is 2.25 times higher compared to the conventional 1480-nm pumping. This improvement in gain coefficient is not limited by the pumping direction. The cause for this high coefficient is explained by analyzing forward- and backward-amplified spontaneous emission spectra. The gain spectra as a function of a pump wavelength suggest that a broadband pump source as well as a single wavelength pump can be used as a 1540-nm-band pump. In the experiment for high-power WDM signals, the power conversion efficiency for 256 WDM channel input is 48.5% with 1545-nm pumping. This result shows more than 20% improvement compared with the previous highest value for the L-band EDFA. Finally, the 1545-nm bidirectionally pumped EDFA is applied as a second stage amplifier in an in-line amplifier of an optical communication link with a 1480-nm pumped first stage EDFA, in which the input power of the second-stage EDFA is +2.2 dBm. The power conversion efficiency yields a 38% improvement without noise figure degradation compared with the case of 1480-nm pumping.  相似文献   

6.
We analyze the transmission of many wavelength-division-multiplexed (WDM) channels through a cascade of erbium-doped fiber amplifiers (EDFA) in both long-distance links and ring-based networks. For a megameter long-distance system, optimal operating conditions are found for achieving a high signal-to-noise ratio (SNR) per channel with as small an SNR differential as possible between 20 WDM channels spaced 0.5 nm apart. Critical issues addressed in this paper include: (a) the non-uniformity of the EDFA gain with wavelength: (b) the link loss between amplifiers; (c) the small-signal gain per amplifier; and (d) the input signal power  相似文献   

7.
崔景翠  刘小明  袁伟  唐平生  彭江得 《中国激光》1998,25(12):1117-1121
对WDM光纤传输系统中EDFA的增益谱特性的研究表明:在饱和工作状态下,多个信道同时输入时各信道的增益低于相同总输入功率的单个信道的增益,且增益谱宽变窄,增益谱峰值随饱和程度的加深向长波长方向偏移。  相似文献   

8.
耿健  张明德  孙小菡 《电子器件》2002,25(4):453-457
本文从掺铒光纤放大器的速率方程理论模型出发、根据光功率传输方程,对多个WDM信道传输时EDFA动态特性进行了模拟分析。提出了以某一路信道进行反馈从而实现增益锁定的方案,模拟计算结果表明,当EDFA的输入功率不超过形成激光振荡所容许的最大输入功率时,以某一路信道信号光进行反馈可以实现增益的稳定锁定;增益锁定作用的时间响应相当快,达到稳态增益锁定值的时间小于5ms;当上下信道或信道功率变化时,增益锁定仍然十分有效。  相似文献   

9.
Optical gain control (OGC) can be used to lock the inversion of an erbium-doped fiber amplifier (EDFA), assuming that the gain medium is homogeneous. However, EDF's exhibit certain degrees of spectral hole burning. As a result, when the OGC laser power and the spectral-hole depth at the laser wavelength change, the inversion of the EDFA changes accordingly with a fixed OGC cavity loss. In this work, a saturable absorber is placed in the OGC laser cavity to adjust the cavity loss dynamically and compensate the gain tilt caused by the OGC laser spectral hole burning. It is demonstrated that the steady state gain variation of a surviving channel in an optically gain controlled EDFA is improved from 1.3 dB (with a fixed loss) to 0.4 dB (with a saturable absorber in the cavity). The transient response of this gain control scheme is also discussed  相似文献   

10.
VDM+EDFA系统中光纤非线性效应影响的研究   总被引:1,自引:0,他引:1  
系统分析了光纤非线性效应对光纤主干网WDM+EDFA扩容的影响,在信道间隔相等的条件下,得出了光纤非线性响应影响下的阈值功率,信道数,信道间隔和EDFA级联数等之间的关系。结果表明,在信道数和信道间隔不同时,FWM,XPM和SRS分别起不同作用;为实现WDM+EDFA技术,每个信道的输入功率必须小于一定值。  相似文献   

11.
Harun  S.W. Ahmad  H. 《Electronics letters》2003,39(17):1238-1240
A gain clamped long wavelength band erbium-doped fibre amplifier (L-band EDFA) based on a ring laser cavity is demonstrated using a fibre Bragg grating (FBG) at the output end of the amplifier. This new design provides a good gain clamping as well as a gain flattening. The gain is clamped at 16.9 dB with gain variation of less than 0.1 dB from input signal power of -40 to -18 dBm by setting the VOA=5 dB. Also, the amplifier has the flattest gain spectrum at VOA=5. The gain variation is less than 1.0 dB within the wavelength range from 1570 to 1600 nm. This gain clamped amplifier also can support a 12 channel WDM system.  相似文献   

12.
成功地使用粒子群优化(PSO)算法优化设计了多级S波段EDFA,仿真结果表明,输入信号功率为-20 dBm时在1486~1520 nm可实现平坦增益,两级泵浦总功率为380 mW,平均增益可达10 dB以上,增益平坦度小于0.1 dB,噪声系数小于5 dB,满足WDM/DWDM系统的需求.另外,还重点对插入长波长ASE...  相似文献   

13.
We propose a novel low noise and gain-flattened Er/sup 3+/-doped fiber amplifier (EDFA) with a cascade configuration for wavelength division multiplexing (WDM) signals. In this configuration, a 1480-nm pumped fluoride-based EDFA is joined to a 980-nm pumped silica-based EDFA through an optical isolator. By adjusting the silica-based Er/sup 3+/-doped fiber length in the silica-based EDFA, we realized an excellent flat gain EDFA with a gain excursion of less than 0.9 dB and noise figure of 5.7/spl plusmn/0.2 dB, and a low noise EDFA with a noise figure of 5/spl plusmn/0.2 dB and a gain excursion of less than 1.4 dB, for 8 channel WDM signal in the 1532-1560-nm wavelength region.  相似文献   

14.
Dynamic digital holographic wavelength filtering   总被引:2,自引:0,他引:2  
This paper describes the theory and results of a new generic technology for use in optical telecommunications and wavelength division multiplexing (WDM): dynamic digital holographic wavelength filtering. The enabling component is a polarization-insensitive ferroelectric liquid crystal (FLC) spatial light modulator (SLM) in conjunction with a highly wavelength-dispersive fixed diffractive element. The technology has been used to perform demultiplexing of single or multiple WDM signals, dynamic erbium doped fiber amplifier (EDFA) gain equalization and channel management, and used to tune an erbium-doped fiber laser (EDFL) functioning as a high power, very narrow linewidth WDM source  相似文献   

15.
We theoretically and experimentally investigate the performance of erbium-doped fiber amplifier (EDFA)-based WDM ring networks with free amplified spontaneous emission (ASE) light recirculation. We show that, with proper network and amplifier design, the lasing light generated by free ASE recirculation within the looped network provides an effective gain clamping technique, ensuring limited signal power excursions under WDM channels add-drop operations. Considering a ring network composed of eight fiber sections and eight EDFAs, maximum signal power overshoots below 2.5dB have been measured under 23/24 WDM channels drop. Optical signal-to-noise ratio (OSNR) analysis and bit-error rate (BER) measurement at 10 Gb/s confirm acceptable performances and negligible penalties due to polarization effects and relative intensity noise transfer from laser light to WDM signals. We also propose and demonstrate a new link control technique which overcomes the main limiting factors of such networks, respectively, related to OSNR degradation, stability and survivability to fiber and EDFA breakages.  相似文献   

16.
We have designed and experimentally characterized an erbium doped fiber amplifier (EDFA) which possesses a wavelength-independent gain spectrum, independent of the operating level of the gain (dynamic gain flatness), and without requiring any gain-level-dependent control of any parameters. In the wavelength range 1542-1552 nm, the gain was flat to within the experimental uncertainties of /spl plusmn/0.3 dB even as the gain level changed by 17 dB. The EDFA was based on a low-Al-content alumino-germanosilicate EDF and a Mach-Zehnder filter. We believe that this type of EDFA, which has not been demonstrated before, can significantly simplify the design of amplified wavelength-division multiplexing (WDM) transmission systems and increase the robustness of long-distance WDM transmission.  相似文献   

17.
The characteristic of EDFA in WDM system is analyzed. The simulation system based on the architecture of the China Information Network (CAINONET) is introduced, and the influence of noise figure, gain unflatness and output power of EDFA on the BER performance and scale of network is investigated. Moreover, the influence of noise figure is studied with different crosstalk . Meanwhile, it is indicated that it is important to apply the "node isolation principle" in the optical network. The research results can provide the valuable reference for the practical construction of all optical network .  相似文献   

18.
Automatic gain control using an all-optical feedback loop in in-line erbium-doped fiber amplifiers (EDFA's) used in hybrid analog/digital wavelength division multiplexing (WDM) systems was studied. It is found that the signal level variation for the digital channels can be maintained within a range /spl les/3-dB between the presence and dropout of the analog channel when the narrowband feedback is centered at the amplified spontaneous emission (ASE) peak (/spl sim/1532 nm) with loop loss ranging between 13-22 dB. Robust transmission at 2.5 Gb/s without measurable power penalty was obtained for the digital channels when the EDFA was saturated by either the analog or the control lasing signal.  相似文献   

19.
In this letter, we demonstrate a technique for suppression of transients in output bursts of an erbium‐doped fiber amplifier (EDFA) in an optical burst network. To suppress the transients, the EDFA is forward‐fed by non‐fluctuating input utilizing a power‐modulated burst control packet channel. Using the technique, we obtained a maximum 1.7 dB reduction in gain transient in the EDFA output, and we transmitted 9.953 Gbps data bursts and 2.488 Gbps burst control packets stably.  相似文献   

20.
Transient phenomena of hybrid Raman/erbium-doped fiber amplifier (EDFA) upon optical channel add-drop are investigated. The transient responses of surviving channels are resulted from the combined dynamics of Raman amplifier and EDFA. It is shown that the suggested method employing fast gain control of EDFA only can effectively suppress the transient variation of output power. The transient-suppressing hybrid Raman/EDFA is proven to be enough for wavelength-division-multiplexing networks including reconfigurable optical add-drop multiplexer and/or transparent optical cross-connect, if the optical switching speed is carefully chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号