首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The degradation efficiencies and mechanism of ozonation for the degradation of sodium acetate in aqueous solution were investigated under atmospheric pressure at room temperature (293 K). The effects of the initial pH value, reaction time, and concentrations of HCO3-, CO32-, CaCl2, and Ca(OH)2 on the removal rate of chemical oxygen demand (COD) were studied. The results indicated that ozonation obviously improved the degradation rate of sodium acetate when the pH value of the solution was not less than 8.5. A suitable long reaction time may be helpful in increasing the COD removal rate, and a removal rate of 36.36% can be obtained after a 30-minute treatment. The COD removal rate increased firstly and decreased subsequently with the increase of the HCO3- concentration (from 0 to 200 mg/L), and under the same experimental condition it reached the optimum 34.66% at the HCO3- concentration of 100 mg/L. The COD removal rate was 5.26% lower when the concentration of was 200 mg/L than when there was no HCO3-. The COD removal rate decreased by 15.68% when the CO32- concentration increased from 0 to CO32- 200 mg/L. has a more obvious scavenging effect in inhibiting the formation of hydroxyl radicals than HCO3-. CaCl2 and Ca(OH)2 could increase the degradation efficiency of sodium acetate greatly, and the COD removal rates reached 65.73% and 83.46%, respectively, after a 30-minute treatment, 29.37% and 47.10% higher, respectively, than with single ozone oxidation. It was proved that the degradation of sodium acetate in the ozonation process followed the mechanism of oxidization with hydroxyl free radicals (·OH).  相似文献   

2.
Electrochemical oxidation was applied to treat the effluent from bioreactor landfill with leachate recirculation, characterised as poor biodegradability and high NH3-N concentration. In this study, the effluent was electrolysed in a batch reactor with Ti/TiO2-IrO2-RuO2 anode and stainless steel cathode. The oxidation of dissolved organic matter (DOM) during electrolysis was evaluated based on the evolution of molecular weight grade, hydrophilic fractionation (humic acid, fulvic acid and hydrophilic fractions), specific ultraviolet absorbance (SUVA254) and AOX. The impact of the initial NH3-N concentration on the oxidation was discussed. The results showed that at a current density of 100 mA/cm2, electrolysis time of 1.5 h and electrode gap of 1 cm, NH3-N with an initial concentration of 1.2 g/L could be completely eliminated and 56% of COD with an initial concentration of 1.2 g/L could be removed, which illustrated that the electrolysis-produced chlorine preferentially oxidised ammonia. The electrolysis mainly resulted in the degradation of humic substances and other high molecular DOM, followed by the increase of BOD/COD ratio and decline of SUVA254 of the leachate. The current efficiencies for COD and ammonia oxidation gradually decreased during the electrolysis, with the latter obviously higher than the former. At the optimal electrolysis time of 1.5 h, NH3-N could be totally removed and the BOD/COD ratio could be enhanced to 0.3, which was also favourable to control the AOX at a reasonable level.  相似文献   

3.
ABR工艺在处理垃圾渗滤液中具有其他厌氧生物反应器所达不到的优点。尤其是对B/C低、氨氮浓度高、COD浓度高的废水处理,通过调节回流比、HRT、碱度等参数后,可以取得很好的处理效果。在本次实验中,HRT控制在18h后明显提高的垃圾渗滤液的可生化性及C/N,使ABR出水CODcr去除率达到75%,C/N为6.72,对后续好氧反应起到了重要作用。在调控一定回流比后,为提供厌氧氨氧化所需的电子受体NO-3和NO-2实现脱氮。反应器在经过120d的培养驯化,氨氮进水为460mg/L,ABR对氨氮的去除率稳定在80%。不同格室的厌氧颗粒污泥都得到很好的驯化并在其合适的环境中发挥各自的功能。  相似文献   

4.
As a first step in treatment of high strength, strong nitrogenous landfill leachates (total COD--9.66-20.56 g/l, total nitrogen 780-1,080 mg/l), the performance of laboratory UASB reactors has been investigated under sub-mesophilic (19+/-3 degrees C) and psychrophilic (10+/-2 degrees C) conditions. Under hydraulic retention time (HRT) of around 1.2 days, when the average organic loading rate (OLR) was around 8.5 g COD/l/day, the total COD removal accounted for 71% (on average) for sub-mesophilic regime. The psychrophilic treatment conducted under the average HRT of 2.44 days and the average OLR of 4.2 g COD/l/day showed an average total COD removal of 58% giving effluents more suitable for subsequent biological nitrogen removal. Both anaerobic regimes were quite efficient for elimination of heavy metals by concomitant precipitation in the form of insoluble sulphides inside the sludge. The subsequent submesophilic aerobic-anoxic treatment of submesophilic anaerobic effluents led to only 75% of total inorganic N removal due to COD deficiency for denitrification created by too efficient anaerobic step. On the contrary, psychrophilic anaerobic effluents (richer in COD compared to the submesophilic ones) were more suitable for subsequent aerobic-anoxic treatment giving the total N removal of 95 and 92% at 19 and 10 degrees C, respectively.  相似文献   

5.
Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.  相似文献   

6.
In order to treat wastewater to a low residual COD-concentration such as 125 mg/L, classical biological treatment is not sufficient for many types of industry. This research focused on the integrated treatment of the wastewater of the paper industry, with a membrane bioreactor (MBR) and an oxidation step. The optimal configuration was examined. Screening tests with different types of oxidation showed that ozonation after biological treatment could reduce the COD with 40% with an ozone dose of 0.4-0.8g O3/g COD. BOD/COD ratio could be increased up to 0.19. Neither combination of ozone with UV and/or hydrogen peroxide nor the process H2O2/UV or (photo-)Fenton reagents gave any improvement in COD reduction or BOD increase, unless the doses were very high. Based on these results, an integrated system MBR-ozonation was designed, with recirculation of MBR effluent over ozonation. This test showed that reduction of COD up to 125 mg/L immediately behind the MBR required a lot of ozone. A technically feasible solution was to discharge the water after an extra ozonation step, which resulted in a high total ozone dosage. The alternative, the consecutive treatment activated sludge-ozonation-activated sludge, did not give a better COD-removal with the same ozone dose as the integrated concept. The economic evaluation proves that the integrated chemical and biological treatment is expensive for the paper industry if a low discharge limit of COD has to be complied with.  相似文献   

7.
Electrochemical oxidation (decolorization/degradation) of blue and red commercial reactive azo dyes was carried out on boron-doped diamond (BDD) electrode. The effect of various quantities of FeSO(4) was investigated in the electro-Fenton reaction on BDD. Progress of dyes degradation during the electrolysis and electro-Fenton reaction was monitored by UV-visible absorption and by estimation of the chemical oxygen demand (COD). Direct electrolysis showed a limiting capacity for red and blue dye removal even at high current densities, e.g. maximum red color and COD removal were 70 and 20%, respectively at 30 mA cm(-2) after 300 min. Higher red and blue color removal efficiencies were achieved by electro-Fenton oxidation. Current density of 30 mA cm(-2) in the presence of 0.05 mmol/L of FeSO(4) resulted in the red color and COD removal of 98 and 96%, respectively. The optimum FeSO(4) concentration for the electro-Fenton reaction was determined to be 0.05 mmol/L. Instantaneous current efficiency (ICE) in the presence of FeSO(4) was almost three times higher than for experiments carried out without FeSO(4).  相似文献   

8.
Landfill leachates are a problematic wastewater due to their variable concentration, volume changing in time and presence of refractory and hazardous components. In this paper, the results of a new approach to photocatalysis assisted by biological process for the detoxification of stabilised landfill leachate are presented. The biologically pre-treated leachate still contained a significant amount of non-biodegradable COD and TOC amounting to 500 and 200 mg/L, respectively. The 300 min of photocatalytic treatment (UVC/TiO2) brought about a significant decrease in more than 80% refractory organics remaining in leachate. The effect of pH and catalyst loading on mineralisation, colour removal rate and biodegradability (BOD/COD) improvement in the photoreactor were discussed. The bio-accessibility of formed photocatalytic oxidation intermediates was confirmed by oxygen uptake rate (OUR) measurements. Consequently, a part of COD was successfully removed in post-biological treatment.  相似文献   

9.
In this study, the effects of low energy ultrasound irradiation on landfill leachate treatment by means of sequencing bath reactor were investigated. The aim of this work was to estimate the influence of leachate irradiation time on aerobic treatment efficiency. The sonification of the leachate was carried out in static conditions using the disintegrator UD-20. The field frequency of 22 kHz (the power output equals to 180 W) and amplitude of 12 microm was applied. The sonification time was changed in the range of 30-140 s. It was found that ultrasonic pretreatment enhances the subsequent aerobic digestion resulting in a better degradation of landfill leachate. The sonification of raw leachate leads to enhancement of COD and ammonia removal as compare to experiment without ultrasound.  相似文献   

10.
The present work describes an experimental study carried out in order to investigate the efficiency and feasibility of physical (lime coagulation) and advanced oxidation processes (Ozone and Fenton's process) for olive oil mill wastewater treatment. Particular attention was paid to the degradation of both organic and phenolic compounds. Lime coagulation reaches maximum removal at a pH of 12, with a TP (total polyphenols) and COD reduction of 37 and 26%, respectively. Ozone oxidation is also pH-dependent, showing the higher removal efficiency (91% for TP and 19% for COD) with an initial pH value of 12. Experimental results show a lower efficiency of Fenton's process than ozone in TP removal, reaching a maximum value of 60%. Oxidation trials carried out on gallic and p-coumaric synthetic solutions confirmed ozone and Fenton's efficiency at degrading phenolic compounds. Biological trials, both aerobic and anaerobic, highlighted a significant increase of biodegradability of treated OMW samples if compared to the untreated ones. Respirometric tests showed an increase in BOD of about 20% and anaerobic batch tests provided a methane production up to eight times higher.  相似文献   

11.
The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatment. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 Ma/cm2, a space size between the two electrodes of 1 cm, and an added amount of 0.5 g/L of NaCl, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).  相似文献   

12.
This work aims to investigate removal efficiency of oxidation and coagulation/flocculation processes, to provide an effective method for the treatment of biologically pre-treated leachate. Leachate containing 985 mg L(-1) COD was treated by using three treatment schemes, i.e. oxidation, coagulation/flocculation and the combined process of coagulation/flocculation followed by oxidation. The application of single oxidation resulted in the effective removal of COD and color up to 80.4 and 83.2%, respectively. However, residual COD values lower than 200 mg L(-1) could only be achieved under intensive experimental conditions (high dosage of Ca(ClO)(2) and prolonged oxidation time). Coagulation/flocculation yielded residual COD values higher than 200 mg L(-1) even at the optimum coagulation conditions. The combined treatment by coagulation/flocculation followed by oxidation yielded final COD lower than 100 mg L(-1) at the following conditions: pre-coagulation with 250 mg L(-1) PFS (poly-ferric sulfate) and over 30-min post-oxidation, or pre-coagulation with 300 mg L(-1) PFS and over 20-min post-oxidation. Hence, pre-coagulation with PFS followed by oxidation with Ca(ClO)(2) was recommended for advanced treatment of biologically treated leachate.  相似文献   

13.
A comprehensive investigation of the uncertainty of different COD analysis methods (DIN, small tube tests (STT) and UV-visible spectrometry methods) has been carried out on potassium hydrogen phthalate standard solutions and raw sewage samples from a large wastewater treatment plant. The UV-visible method allows estimating COD equivalent concentration from the measured absorption spectra by means of site specific regression and correlation functions. CODdin and CODstt methods showed equivalent global results but specific calibration relationships are necessary when high accuracy is required. The CODstt method is suitable for immediate COD analysis in the field. Sub-sampling is the main source of uncertainty. Spectrometry is able to estimate CODeq with an uncertainty of the same order of magnitude as the uncertainty in CODdin.  相似文献   

14.
The aim of the present study was to evaluate the behaviour of vertical flow constructed wetlands to treat high strength wastewater. Influents were obtained mixing tap water with different percentages of MSW landfill leachate (5%, 10% and 20%). Phragmites australis seedlings were used as macrophytes. The reeds were nurtured during three spring months, before the start of the experimental period. Three and four days of detention time were adopted. Influent concentrations of 510-2,050 mg L(-1), 180-740 mg L(-1) and 65-260 mg L(-1) were obtained for COD, N-NH4(+) and N-NO3(-), respectively. The environmental temperature averaged around 31.0 +/- 1.4 degrees C. During the experimental period, all parameters showed an increasing removal efficiency trend. Best results in terms of COD removal were obtained for mixtures at lowest rate of landfill leachate; while, denitrification process showed an opposite behaviour; finally, the removal of ammonia nitrogen appeared to be independent upon influent concentrations. Analysis carried out on the reed tissues showed a theoretic maximum storage of TKN in the leaves of about 55 mg/g dry weight. A leachate percentage of about 35% was derived to be able to fully inhibit the growth of macrophytes.  相似文献   

15.
For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.  相似文献   

16.
This paper reports the results of an investigation aimed at evaluating the laboratory-scale performance of an innovative process for treating tannery wastewater. In this process, biological degradation, carried out in a sequencing batch biofilm reactor (SBBR), is combined with chemical oxidation by ozone. Tannery wastewater treatment was carried out, at laboratory scale, on a real primary effluent coming from a centralised plant treating wastewater produced by a large tannery district in Northern Italy. SBBR performance both without and with ozonation, was assessed with very satisfactory results. In particular, in the latter instance the recorded COD, TKN and TSS average removals, (96%), (92%) and (98%) respectively, allowed the maximum allowable concentration values fixed by the Italian regulation in force to be achieved without any additional polishing step. During the investigation biofilm properties (biofilm concentration and biofilm density) and flow dynamics aspects (head loss, shear stress, bed porosity) were also studied. A major feature of the process is that, with or without ozonation, it was characterised by very low specific sludge production (0.05 kgVSS/kgCODremoved) and high biofilm density (i.e. 87-122 gVSS/Lsludge) both contributing to a rather high biofilm concentration (i.e. 31-44 gTSS/Lfilter).  相似文献   

17.
In treating textile wastewater, the application of membrane bioreactor (MBR) technology showed high efficiency in COD and BOD5 removal. However, insufficient colour removal was achieved for possible reuse. The aim of the work presented in this paper was to test the performance of chemical advanced oxidation on the elimination of the colour downstream of an MBR. To improve the quality of the membrane bioreactor effluent three different oxidation treatments were tested at lab-scale: ozonation, chlorination and hydrogen peroxide oxidation. Colour, COD and BOD5 were controlled in order to assess the effectiveness of each process. For chlorination, even with 250 mg/L (active chlorine) only 80% colour removal (SACin = 14; SACout = 2.8) was achieved which is considered unsatisfactory. For hydrogen peroxide, the colour removal was even poorer; it was just 10% at a concentration of 250 mg/L. In contrast, good results were obtained by ozonation. By using only 38 mg/L within 20 minutes, it was possible to achieve the reuse recommendation with a satisfactory colour removal of 93% (SACin = 14; SACout = 0.98). The results showed that ozonation was the most promising method.  相似文献   

18.
The present work reports the use of sonochemical reactors for the degradation of phenol in the presence of additives with an objective of enhancing the rates of degradation at a pilot scale operation. Process intensification studies have been carried out using additives such as hydrogen peroxide (H2O2) (0.5-2.0 g/L), sodium chloride (0.5-1.5 g/L) and solid particles viz. cupric oxide (CuO) and titanium dioxide (TiO2) (0.5-2.5 g/L). Optimum concentration for H2O2 and sodium chloride has been observed beyond which no beneficial effects are obtained even with additional loadings. Maximum extent of degradation has been observed by using ultrasound/H2O2/CuO approach at a solid loading of 1.5 g/L followed by ultrasound/H2O2/TiO2 approach at a loading of 2.0 g/L. The obtained results at pilot scale operation in the current work are very important especially due to the fact that the majority of earlier studies are at laboratory scale which cannot provide the design related information for large scale operation as required scale up ratios are quite high adding a degree of uncertainty in the design. The novelty of the present work lies in the fact that it highlights successful application of sonochemical reactors for wastewater treatment at pilot scale operation.  相似文献   

19.
The paper reports the results of an investigation carried out at lab scale to assess the effectiveness of an innovative technology (SUPERBIO) for treating municipal and/or industrial wastewater. When this technology was applied for treating municipal wastewater, the results showed that even at maximum organic load (i.e. 7 kg COD m(-3) d(-1)), the COD in the treated effluent was lower than 50 mg L(-1). In addition, both ammonia and TKN removal efficiencies resulted in higher than 87% up to an organic load of 5.7 kg COD m(-3) d(-1) corresponding to a nitrogen load of 0.8 kg TKN m(-3) d(-1). Very satisfactory process performances also resulted during tannery wastewater treatment, when a chemical oxidation step (i.e. ozonation) was inserted in the treatment cycle of SUPERBIO. In such an instance, at organic and nitrogen loadings of 3 kgCOD m(-3) d(-1) and 0.20 kg N m(-3) d(-1), COD, NH4+ -N and TSS average removals were 96, 99 and 98%, respectively. Finally, during the whole experimentation, SUPERBIO was always characterised by a very low sludge production. Such a result was ascribed mainly to the characteristics of biomass that grew in the form of very dense granules (i.e. 130 gVSS L(Biomass)(-1) allowing a biomass concentration as high as 50-60 gTSS l(bed)(-1) to be achieved.  相似文献   

20.
Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号