首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Injection locking of a GaAlAs laser by coupling light into a nonlasing Fabry-Perot mode separated by up to 22 mode spacings (60 Å) from the free-running lasing mode is demonstrated. The gain spectra for operation above threshold are determined from measurements of the wavelength dependence of the injected power required for locking. These results are compared to gain curves deduced from spontaneous emission spectra measured slightly below threshold. For the greatest wavelength separation, the gain difference was found to be about 4 cm-1, with injected power levels of 1 percent of the total slave laser power required to obtain 75 percent of the total energy at the master laser frequency.  相似文献   

2.
The authors demonstrate optical logic functions of an inverter (NOT) and an exclusive-OR (XOR) using a tunable wavelength conversion (TWC) laser diode developed as a component in optical wavelength division multiplexing (WDM). The TWC laser's optical functions are easily changed by varying bias current settings in gain sections. At just above the turn-on threshold, the TWC laser acts as an optical inverter. At just below the turn-off threshold, it acts as an optical XOR element. The mechanism of both NOT and XOR operations is based on gain quenching accelerated through a saturable absorber, a major feature of the TWC laser. Single longitudinal-mode lasing and the tunability of the lasing wavelength, other features of the TWC laser, are effective in distinguishing lasing light signals from input light signals  相似文献   

3.
In this paper, we derive a relation between the wavelength chirp and carrier temperature in semiconductor lasers. The coefficient relating the change in carrier temperature and chirp is expressed in terms of the temperature derivative of the optical gain, and two parameters describing the variation of refractive index produced by the variation of optical gain due to change of carrier quasi-Fermi level separation or carrier temperature. We have measured these parameters for MQW InGaAsP lasers, Using this data, we estimated the rate of the temperature increase with current above threshold in these devices, which is 0.13 K/mA  相似文献   

4.
Based on the multimode rate equations taking account of transverse mode and carrier density distributions, the axial mode behavior in semiconductor lasers is investigated. The axial mode stability is significantly affected by these distributions. Above threshold, because of hole burning in the carrier density distribution, the gain at any wavelength except the lasing wavelength does not maintain the value at threshold. If the nonlasing mode wavelength is located in the gain decreasing spectral region, its light output decreases with the increase of current. These characteristics are observed in the experiment for a CSP laser. For axial mode stabilization, a large built-in refractive index step is effective so long as single transverse mode operation is maintained. If the injection current region is defined separately from the guiding region, the wider width of the injection current region leads to a more stabilized axial mode.  相似文献   

5.
生长了InGaAsp/InGaP/In(AlGa)P材料分别限制应变量子阱半导体激光器,发光波长780nm。利用电化学C-V表征材料掺杂,掺杂浓度达10^18cm^-1。利用荧光PL及EL表征其光学性质,PL峰为765nm。制得100μm、宽1mm长条形。测得阈值电流为315mA,斜率效率超过1W/A,功率转换达40%左右。注入电流1.5a,光功率单管输出达到1.2W。  相似文献   

6.
The active region gain expression for Pb1-xSnxTe lasers is obtained from thek cdot pmodel of the conduction and valence band extrema. Curves of gain versus frequency with current, temperature, and majority carrier concentration as parameters are calculated using published values of thek cdot pmodel parameters. In addition, threshold current versus temperature and threshold current versus majority carrier concentration curves are given. A simple expression is obtained for the conductivity effective mass for use in the equation for free-carrier absorption appropriate to the highly degenerate majority carrier concentrations typical of Pb1-xSnxTe laser material.  相似文献   

7.
The group refractive index dispersion in ultra-broad-band quantum cascade (QC) lasers has been determined using Fabry-Perot spectra obtained by operating the lasers in continuous wave mode below threshold. In the wavelength range of 5-8 /spl mu/m, the global change of the group refractive index is as small as +8.2 /spl times/ 10/sup -3/ /spl mu/m/sup -1/. Using the method of Hakki and Paoli (1975), the subthreshold gain of the lasers has furthermore been measured as a function of wavelength and current. At the wavelength of best performance, 7.4 /spl mu/m, a modal gain coefficient of 16 cm/spl middot/kA/sup -1/ at threshold and a waveguide loss of 18 cm/sup -1/ have been estimated. The gain evolution confirms an earlier assumption that cross-absorption restricted laser action to above 6 /spl mu/m wavelength.  相似文献   

8.
A model solving the steady-state laser equations above threshold is presented. It calculates important laser parameters such as the threshold losses, emitted optical power, gain margin between the main and secondary modes and, spectral linewidth of any index-grating DFB laser structure. A more exact theoretical linewidth calculation considering nonuniform carrier densities and gain saturation is reported. Good agreement with experiments is found on phase-shifted lasers. The model is used to investigate the factors that determine the importance of spatial hole burning, and general design rules are proposed to reduce this effect. Gain compression combined with carrier-dependent losses is shown to limit the differential external efficiency and cause the emission wavelength to decrease and the spectral linewidth to rebroaden at high output power  相似文献   

9.
The maximum possible shift in emission wavelength of a quantum-well (QW) intermixed distributed-feedback (DFB) laser as a function of degree of intermixing is studied. In a recent experiment, the wavelength shift of a QW intermixed DFB laser is around 13% of the bandgap blue shift. Our study indicates that if a smaller grating period is used, the wavelength shift can be increased by four times to 50% of the bandgap blue shift, because it is not necessary to change the carrier density significantly in order to maintain a modal gain above lasing threshold. The maximum tuning range is found to be 20 nm, indicating that QW intermixing can be used to fabricate multiwavelength DFB laser arrays for wavelength-division-multiplexing communication systems  相似文献   

10.
Optical gain and losses of GaAs laser diodes were deduced from the length dependence of the threshold current density and the differential external quantum efficiency at 77 and 300°K. It has been confirmed that the optical gain is proportional to the threshold current density Jt; and the optical losses are given by the sum of current independent termalpha_{0}', and current dependent termbeta"J_{t}, which is proportional to the threshold current density. The termbeta"J_{t}depends on the laser wavelength because the threshold current density depends on the laser wavelength. It is believed thatbeta"J_{t}is caused by the penetration of the laser oscillations into the noninverted regions surrounding the inverted population region of thep-njunction.  相似文献   

11.
Threshold current characteristics of intracavity-contacted oxide-confined vertical-cavity surface-emitting laser had been investigated in detail. Threshold current characteristics not only were depended on the size of oxide-aperture, but also were also strongly affected by the mismatch of its lasing mode and gain peak. For the same degree detuning of the gain peak and lasing mode at room temperature, the threshold current was approximately proportional to the square of the oxide-aperture diameter of above 5μm. For the same oxide-aperture device, the larger the detuning degree of the lasing mode shifted to the shorter wavelength of the gain peak at room temperature was, the lower the minimum threshold current was. The wavelengths of the lasing mode and gain peak were ±N×10nm detuning at 300K, The temperature of the minimum threshold current was changed to be about ±N×40K(N real number). The calculated results were consistent with the experimental ones.  相似文献   

12.
The emission characteristics of n-type modulation doped GaAs-AlGaAs quantum-well lasers are studied for constant doping density and stepped doping density laser cores. Constant doping density cores are found to have a shift to shorter wavelength with increasing doping density but suffer from a corresponding large increase in threshold current density. Stepped doping density cores exhibit clear wavelength shifting from the first to second quantized state transitions with increased doping near the quantum well while maintaining low threshold current densities. Threshold current densities of 440 A/cm2 are measured for second quantized state lasing in stepped core lasers. Gain spectra are measured for the stepped doping density core devices and modulation doping is shown to improve the gain bandwidth by 50% over undoped devices  相似文献   

13.
高性能InAs/GaAs量子点外腔激光器   总被引:2,自引:2,他引:0  
为了获得高性能的量子点外腔激光器(ECL),利用InAs/GaAs量子点Fabry-Perot(FP)腔激光器研制了光栅外腔可调谐ECL。对InAs/GaAs量子点ECL进行了一系列的性能测试,主要包括单模稳定性测试、单模调谐范围测试、阈值电流密度测试、无跳模连续调谐测试和输出功率测试。在室温条件下获得了24.6nm的连续调谐范围,覆盖波长从999.2nm到1 023.8nm,并且实现了波长无跳模连续调谐。在调谐范围内最低阈值电流密度为1 525A/cm2,而且在中心波长处获得的单模输出功率为15mW,单模边模抑制比(SMSR)高达35dB。研究结果表明,通过构建光栅外腔可以实现高性能的InAs/GaAs量子点ECL。  相似文献   

14.
We have measured the gain and the carrier lifetime at threshold in shallow proton stripe AlGaAs multiquantum well lasers with several different active layer structures. The lasers studied had active layers with two wells, four wells, six wells, and the modified multiquantum well. The net gainGis found to vary almost linearly with the injection currentIfor all the laser structures studied. The slopedG/dIis largest for the modified multiquantum well (MMQW) laser which is consistent with the observed lowest threshold current of these devices. We find that the carrier density at threshold for the MMQW laser is about a factor of 4 lower than that for a single quantum well laser. Thus, the effect of a nonradiative mechanism (e.g., Auger effect) which varies superlinearly with the injected carrier density is considerably reduced in MMQW lasers compared to that in single quantum well (SQW) lasers or the conventional double heterostructure lasers. The reduced threshold carrier density of the MMQW lasers has important implications for high temperature performance of lasers fabricated from the InGaAsP/InP material systems which are believed to have nonradiative mechanisms that vary superlinearly with carrier density, particularly for those laser structures for which the high temperature operation is not limited by leakage current.  相似文献   

15.
We report here our experimental observations on the temperature dependence of threshold current, carrier lifetime at threshold, external differential quantum efficiency, and gain of both the 1.3 μm InGaAsP-InP and GaAs-AlGaAs double heterostructure (DH) lasers. We find that the gain decreases much faster with increasing temperature for a 1.3 μm InGaAsP DH laser than for a GaAs DH laser. Measurements of the spontaneous emission observed through the substrate shows that the emission is sublinear with injection current at high temperatures for the 1.3 μm InGaAsP DH laser. Such sublinearity is not observed for GaAs DH lasers in the entire temperature range 115-350 K. The experimental results are discussed with reference to the various mechanisms that have been proposed to explain the observed temperature dependence of threshold of InGaAsP DH lasers. We find that inclusion of a calculated nonradiative Auger recombination rate can explain the observed temperature dependence of threshold current, carder lifetime at threshold, gain, and also the sublinearity of the spontaneous emission with injection current of the 1.3 μm InGaAsP-InP DH laser. Measurement of the nonradiative component of the carrier lifetime (τA) as a function of injected carrier density (n) shows thattau_{A}^{-1} sim n^{2.1}which is characteristic of an Auger process.  相似文献   

16.
连续波激光辐照半导体InSb材料的熔融破坏   总被引:9,自引:2,他引:7  
采用数值方法 ,研究了半导体 In Sb材料受连续波激光辐照的熔融阈值 ,讨论了 In Sb材料的熔融阈值与入射激光波长、功率密度以及辐照时间的关系 ,同时考虑了载流子效应对靶内温升过程以及熔融阈值的影响 ,给出了材料内温度与载流子密度的瞬态分布  相似文献   

17.
A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.  相似文献   

18.
An analysis of surface-emitting distributed feedback lasers under conditions above threshold is presented. The coupled-wave equations are integrated numerically using a self-consistent technique that includes the effects of gain saturation, carrier diffusion, antiguiding, and free carrier loss. The laser threshold current and slope efficiency are determined as a function of the strip length and p-layer thickness where it is found that the device efficiency can be very high. Antiguiding, which varies when the grating is mistuned with respect to the gain peak, influences the slope, threshold, and shape of the emission far field. Small variations in the longitudinal index of refraction are shown to affect the far-field intensity profile significantly  相似文献   

19.
A method for measuring laser diode facet antireflection coating over wavelength is presented. The laser diode is coupled to a wavelength-selective external cavity, and laser threshold current over the wavelength region of interest is measured. The coating reflectivity over wavelength is derived from the threshold current data. Reflectivities as low as 1×10-5 have been measured with good fit over wavelength to an ideal single layer coating. The net external cavity feedback is also determined. An estimate of the accuracy of the reflectivity measurement is made  相似文献   

20.
Wavelength shift during the period of direct modulation (dynamic wavelength shift) for injection lasers having a BH structure has been investigated both experimentally and theoretically. A GaInAsP/InP BH laser emitting a nominal wavelength of 1.61 μm was modulated by a sinusoidal current at frequencies in the range of 0.2-2 GHz. The full width of the dynamic wavelength shift was 0.35 nm at a modulation frequency of 1.8 GHz, and a modulation depth of 63 percent at a bias current 1.14 times the threshold current. It was found that the width of the dynamic wavelength shift increases with proportion to the modulation depth, and with inverse proportion to the bias current at a frequency below 1 GHZ. The differential coefficientdn/dNof refractive indexnfor carrier densityNin the active region was measured for the purpose of the analysis. The value obtained is-1.2 times 10^{-20}cm3. The dynamic shift of the lasing wavelength was found to be characteristic of the change of the refractive index induced by the oscillation of carrier density in the active region during intensity modulation. The theoretical shift shows maximum value at a resonance-like modulation frequency. The peak height of the resonance wavelength shift is strongly affected by carrier diffusion in the transverse direction, and has a minimum value when stripe width is nearly equal to carrier diffusion length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号