首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
本文详细地叙述了文丘里音速喷嘴作为国际标准的各项规定,主要包括:名词术语及符号;基本方程;喷嘴结构;设计与安装要求;计算方法与不确定度估算;以及在设计和流量计算时所需要的系数用表。  相似文献   

2.
现行气体钻井存在污染环境、浪费能源等问题。为了回收钻井介质氮气或者天然气,设计了气体分离设备和液体排料方案;为了使气体钻井地面分离设备液体排料系统能够连续工作,必须要保证排料速度大于排料,临界流速。运用R.Durand临界流速计算公式分析得出,在设备结构确定以后,排料临界流速随着井口钻屑粒径、排料流体体积分数的增加而增加。通过对井口钻屑粒径影响因素的分析和排料流体体积分数的计算,将排料临界流速与钻井工况参数进行了关联,得出排料,临界流速随着注气量、钻井速度、分离器分离效率的增加而增加;随着井深、岩层硬度和孔隙率的增加而减小。  相似文献   

3.
准确计算气井临界携液流量具有十分重要的意义。国内外学者在Turner公式的基础上对其携液系数进行修正得到了不同的临界携液流量公式,但这些公式忽略了将表面张力及气体偏差系数取为常数对计算结果的影响,也未考虑不同携液系数对各气田的适用性,因此应用过程中往往存在较大误差。为此,本文首先对公式中的表面张力及气体偏差系数进行了修正,并对忽略这两个参数的变化所产生的计算误差进行了分析,然后探讨了常规公式不具有普遍适用性的原因,并在此基础上提出了一种应用流温流压梯度测试资料推导携液系数并得到目标气田临界携液流量公式的新方法。最后经实例验证表明本文提出的临界携液流量计算新方法相较于常规方法更具准确性和现场适用性。  相似文献   

4.
《天然气与石油》1995,13(2):43-51
本文详细地叙述了文丘里音速喷嘴作为国际标准的各项规定,主要包括:名词术语及符号;基本方程;喷嘴结构,设计与安装要求;计算方法与不确定度估算,以及在设计和流量计算时所需要的系数用表。  相似文献   

5.
气藏水平井携液临界流量计算   总被引:6,自引:2,他引:6  
液滴在水平井筒中的受力情况与垂直井筒中截然不同,根据垂直井筒中质点力学分析获得的计算气井携液临界流量的Turner公式及其修正式不再适用于水平井。根据水平井筒内液滴质点分析理论,推导出水平气井的携液临界流量公式。与水平管气液两相流态机理计算得到的携液临界流量结果的对比结果表明,用质点分析理论计算得到的携液临界流量比气液两相流态机理计算结果要偏于乐观,且其流态正处于环状流和雾状流的过渡区。因此,在实际应用中,用质点分析理论计算的结果可根据生产井实际情况在一定范围内进行调整。  相似文献   

6.
气井开始积液时,井筒内气体的最低流速称为气井携液临界流速,对应的流量称为气井携液临界流量.曳力系数是推导临界流速公式的重要参数,本文引用西南石油学院彭朝阳推导出的临界流速公式进行计算,经过实验验证,此公式更能较为准确地预测气井积液情况.根据所引用的临界流速公式,对某气井进行分析表明:在不改变气液的表面张力和天然气相对密度,并同时增大温度和压力的情况下,天然气的压缩系数及气体的密度会发生变化,随着温度和压力的增加,气体的临界流速增大,而临界流量随之减小.为了保证该气井能够连续携液生产,将井底的积液完全排出井口,气井在生产过程中的产气量应大于井口的临界流量.  相似文献   

7.
刘刚 《断块油气田》2014,(3):339-340
气井最小携液临界流量是气藏开发方案编制中的一个重要参数.目前现场主要应用Turner和李闵公式进行气井携液临界流量的计算.但这2个公式具有一定的局限性,都没有考虑界面张力对携液临界流量的影响,在计算时将气水界面张力简化为常数进行计算,而实际上界面张力是温度与压力的函数.因此,文中对现有计算公式进行了修正,并根据实际气井情况进行了计算,结果表明,在计算气井携液流量时应该考虑界面张力,其计算结果更为客观、实际.  相似文献   

8.
9.
10.
介绍了适用于乙烯气体质量流量测量的科氏质量流量计等10种流量计的特性,以发生过计量纠纷的实例,说明乙烯气体流量计选型和使用应注意的问题,并以一组小流量乙烯气体测量数据为实例,说明如何以合理的经济性能价格比来选用气体流量计。  相似文献   

11.
围绕气井携液临界流速的计算,有很多理论推导或实践回归模型。因为模型之间的差异很大,在模型选择与应用方面一直没有定论。通过多模型对比与辩证分析发现,模型之间存在基本恒定的比例关系,对井筒两相流动中液相存在形态认定的不同是模型之间的主要区别,没有一种模型可以对井筒连续携液工况作出一个全面合理的解释。依据流体力学基本原理和两相垂直管流流态基本理论,结合实验观察和现场实测流压梯度分析,对井筒携液工况开展了进一步的探讨,认为环雾流同样具有连续稳定的携液能力,液滴雾流并非唯一的连续携液流态,把深究液滴的具体形状作为求解携液临界参数的唯一途径,存在明显的局限性。结合两相携液流态特征,提出了便于现场操作的模型选择与应用意见。  相似文献   

12.
目前广泛应用的天然气井临界流量计算模型均建立在直井基础之上,没考虑井斜角对气体携液的影响,但海上天然气井大多为定向井和水平井,现有模型不能准确预测海上气井是否积液.研究认为,液滴在斜井运动过程中会与管壁发生碰撞,碰撞后液滴呈“半球形”,并最终沿管壁滑动.同时根据海上天然气井的特点,以Turner模型为基础,考虑井斜角的影响,对Turner模型进行了修正,提出了海上气井携液临界流量预测的模型,并推导出了快速修正系数.  相似文献   

13.
天然气斜井携液临界流量预测方法   总被引:4,自引:0,他引:4  
目前,广泛应用的天然气井携液临界流量计算模型是建立在直井基础之上的,没有考虑井斜角对携液的影响。但是,随着定向井和水平井的日益增多,现有直井计算模型已经不能准确预测斜井的携液临界流量。为解决这个问题,以Turner计算模型为研究基础,同时考虑井斜角的影响,根据球形液滴的受力条件,认为其在斜井井筒运动过程中不会一直沿井筒中心线上升,而是慢慢运移至油管壁,最终沿管壁向上方滑动。依据牛顿摩擦定律,计算出管壁对液滴的摩擦力,重新建立液滴受力模型,提出了斜井携液临界流量预测模型。最后,在Turner模型的基础上,推导出了修正系数表,认为修正系数与摩擦系数和井斜角有关。通过现场实例应用,计算结果表明该计算方法具有较高的精度。  相似文献   

14.
低气液比携液临界流量的确定方法   总被引:3,自引:0,他引:3  
针对低气液比的气井携液情况,以Hogedarn和Brown井简压力计算方法为基础,定义了理论和实际持液率,建立确定低气液比携液临界流量的原则和计算公式,对携液临界流量影响因素的讨论及井底压力的分析表明:为了保持正常携液,不仅需要一定的产气量,而且必须具备相当高的气层压力。现场实例分析表明,该方法计算结果与气井实际生产情况相吻合。图1表6参9。  相似文献   

15.
周舰  王志彬  罗懿  李颖川  李璇 《断块油气田》2013,(6):775-778,796
基于气井井筒积液对气藏开发的危害性,在现有携液模型的基拙上,利用受力平衡理论和能量守恒原理,建立了气井临界携液气流量计算新模型;通过引入新模型系数,对液滴大小及液滴变形特征进行了综合表征。模型计算结果表明,新模型系数随压力增大而增大,有效地弥补了现有携液模型存在的不足。现有携液模型及新模型的适应性分析结果表明,新模型在高、低压气井中均具有良好的适用性。现场应用新模型有效预侧了大牛地气田气井的积液状态,为产水气藏的有效开发提供了有力的技术支持  相似文献   

16.
斜井携液临界流量模型研究   总被引:2,自引:0,他引:2  
斜井井筒结构复杂,井筒内气流携液困难。利用斜井模拟实验装置对斜井携液临界流量进行测试,将实验结果与液滴模型、Belfroid携液模型、液膜模型进行对比,结果表明:理论模型计算出的携液临界流量值比实验测试值大,Belfroid携液模型计算的携液临界流量值随井筒倾角变化趋势与实验测试结果一致。根据实验测试数据,对Belfroid携液模型中的携液临界流速公式系数进行修正,得到斜井携液临界流量修正模型。利用修正模型诊断的气藏斜井积液情况,其诊断结果与采取回声仪诊断液面的结果一致,证明斜井携液临界流量修正模型能较好的预测井底积液情况。  相似文献   

17.
随着大牛地气田的不断开发,气井压力逐渐降低,气井积液越来越严重,准确预测气井的临界携液流量与流速对气井的配产以及积液判断有着重要的意义。除了寻找适合本气田的临界携液流量模型外,还要考虑最大携液流量在井筒中出现的位置。为此,文中通过建立气井临界携液流量模型与井筒压力、温度分布模型,以流压测试数据为基础,对临界携液流量与流速沿井筒的分布规律展开研究。结果表明:当压力梯度小于临界压力梯度时,临界携液流量随井深增加而减小,当压力梯度大于临界压力梯度时,临界携液流量随井深增加而增加;温度梯度为分别为1.5,2.0,2.5,3.0℃/100 m,临界压力梯度分别为0.04,0.05,0.06,0.07 MPa/100 m。  相似文献   

18.
大斜度气井临界携液产量预测新方法   总被引:1,自引:0,他引:1  
目前广泛应用的天然气临界产量计算模型都是建立在直井的基础上,没有考虑井斜角对携液的影响.根据大斜度天然气井中液滴运动特点,以应用最普遍的Turner模型为基础,考虑井斜角的影响对Turner模型进行了修正,推导出大斜度气井临界携液产量预测公式,并给出了Turner公式修正系数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号