首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Based on a comprehensive cost analysis for the expansion of the Finnentrop WWTP, integration of lamella separators in the biological treatment stage was given priority as optimal solution to increase the solids concentration. The overall expansion project included the reconstruction of the former primary clarifier into a primary settling tank with short retention times and the use of the remaining volume for pre-denitrification. Four lamella separators were positioned in the existing carousel-type activated sludge tank. With the lamella assemblies ensuring it was possible to continue operation of the existing secondary settling tanks. To control an adequate solids concentration in the activated sludge tank and to avoid any overloading of the secondary settling tank, a newly developed bypass strategy was applied. With a controlled mixing of direct effluent from the lamella separators and the contents of the activated sludge tank, the solids concentration of the influent to the secondary settling tank could be maintained at a value of 2.2 kg/m(3). The lamella separator concept did not account for any significant changes in the sludge characteristics, and the overall elimination of nutrients and organic carbon was found to be excellent upon optimisation of the operational lamella strategy.  相似文献   

2.
不同填料曝气生物滤池启动挂膜试验研究   总被引:1,自引:0,他引:1  
不同填料曝气生物滤池在相同条件下进行挂膜试验。进水流向为上流式,挂膜方式为复合接种挂膜,即先用活性污泥闷曝接种,然后逐步提高进水流速,直到滤料表面形成稳定的生物膜。结果表明:33 d后挂膜成功,在温度为16~24℃,水力停留时间(HRT)为1 h,DO为6 mg/L的情况下,陶粒BAF对CODMn和NH3—N的去除率分别为23%和80%;沸石BAF的去除率分别为27%和84%;组合填料BAF去除效果最好,去除率分别为32%和92%。  相似文献   

3.
In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).  相似文献   

4.
Achieving and maintaining good biomass settling characteristics is a critical process design objective for any activated sludge wastewater treatment plant (WWTP), whether intermittent or continuous technology. One way of ensuring good sludge settleability in intermittent WWTPs is the incorporation of bioselectors in the process. A bioselector is essentially a small discrete reactor volume designed primarily for carbon absorption, in which activated sludge organisms are exposed to a high substrate concentration for a relatively short time. It is normally very much smaller than an anoxic zone and the activated sludge recycle is only a fraction of that typically adopted in continuous plants. With proper conditioning, recycled biomass rapidly absorbs and stores soluble organic wastewater components before transfer to the main treatment basin. This absorption and storage mechanism, and careful management of aeration throughout the intermittent treatment cycle, plays a crucial role in many subsequent growth and treatment processes, including sludge floc formation, denitrification and biological phosphorus removal. This paper examines some design considerations, and reviews the benefits of bioselectors by reference to the commissioning and initial operation of the new 160ML/d Woodman Point Sequencing Batch Reactor in Perth, Western Australia. The applicability of bioselectors in continuous plants is discussed.  相似文献   

5.
In activated sludge systems the mechanically treated wastewater is biologically cleaned by biomass (activated sludge). The basic requirement of an efficient biological wastewater treatment is to have as a high biomass concentration in the biological reactor (BR) as possible. The activated sludge balance in activated sludge systems is controlled by the settling, thickening, scraper mechanism in the secondary settling tank (SST) and sludge returning. These processes aim at keeping maximum sludge mass in the BR and minimum sludge mass in the SST even in peak flow events (storm water flow). It can be, however, only reached by a high SST performance. The main physical processes and boundary conditions such as inhomogeneous turbulent flow, geometrical features of the SST, wastewater treatment plant (WWTP) load, return sludge flow, sludge volume index etc. all influence settling thickening and sludge returning. In the paper a novel mass transport model of an activated sludge system is presented which involves a 2-dimensional SST model coupled with a mixed reactor model of the biological reactor. It makes possible to investigate different sludge returning strategies and their influence on the sludge balance of the investigated activated sludge system, furthermore, the processes determining the flow and concentration patterns in the SST. The paper gives an overview on the first promising model results of a prevailing peak flow event investigation at the WWTP of Graz.  相似文献   

6.
In many cases, reducing sludge production could be the solution for wastewater treatment plants (WWTP) that here difficulty evacuating the residuals of wastewater treatment. The aim of this study was to test the possibility of minimising the excess sludge production by coupling a thermal hydrolysis stage and an anaerobic digestion with a very short HRT. The tests were carried out on a 2,500 p.e. pilot plant installed on a recycling loop between the clarifier and the actived sludge basin. The line equipped with the full scale pilot plant produced 38% TSS less than the control line during a 10 week period. Moreover, the rapid anaerobic digestion removed, on average, more than 50% of the total COD load with a hydraulic retention time (HRT) of 3 days. Lastly, the dryness of the remaining excess sludge, sanitised by the thermal hydrolysis, was more than 35% with an industrial centrifuge. This combination of thermal hydrolysis and rapid anaerobic digestion equally permits a significant gain of compactness compared to traditional anaerobic digesters.  相似文献   

7.
8.
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.  相似文献   

9.
The Rya WWTP in Göteborg, Sweden is a highly loaded activated sludge plant which has been upgraded to remove nitrogen and to increase the biologically treated flow by 33% to reduce bypassing. Severe site restrictions made it difficult to increase the plant area. This was solved using a compact process based on tertiary nitrification in trickling filters and recirculation to a highly loaded activated sludge unit for denitrification. The necessary volumes were achieved by expanding the plant upwards, thus making it possible to place the trickling filters a in part of the area occupied by the former aeration basins. The recirculation of trickling filter effluent made it necessary to double the secondary settler capacity. This was solved by retrofitting the existing settlers as stacked settlers with a second tray on top of the original basin. The considerations behind process selection and plant design and costs are described.  相似文献   

10.
Optimisation of nitrifying activated sludge plants towards nutrient removal (denitrification and enhanced P-removal) leads to a substantial reduction of operating costs and improves effluent and operating conditions. At WWTP Zürich-Werdh?elzli, initially designed for nitrification only, an anoxic zone of 28% of total activated sludge volume was installed and allowed 60% nitrogen elimination besides several other optimisations. In 2001 the operation of WWTP Zürich-Glatt was stopped and the wastewater was connected to WWTP Werdh?elzli. To improve nitrogen removal, WWTP Werdh?elzli co-financed two research projects; one for separate digester supernatant treatment with the anammox process operating two SBRs in series and the other applying NH4 sensors for aeration control in order to decrease energy consumption and raise effluent quality. The results of both projects and the consequences for WWTP Werdh?elzli are discussed in this paper.  相似文献   

11.
The paper presents the results of two full-scale applications of the anaerobic co-digestion process of waste activated sludge together with the organic fraction of municipal solid wastes. The experiences were carried out at Viareggio and Treviso wastewater treatment plants (Italy). In the first plant, 3 tons per day of source sorted OFMSW were co-digested with waste activated sludge, increasing the organic loading rate from 1.0 to 1.2 kgTVS/m3d. This determined a 50% increase in biogas production. At Treviso WWTP, which has been working for 2 years, some 10 tons per day of separately collected OFMSW are treated using a low-energy consumption sorting line, which allows the removal of 99% and 90% of metals and plastics respectively. In these conditions, the biogas yield increased from 3,500 up to 17,500 m3/month. Industrial costs were evaluated less than 50 Euro per ton of organic waste, while the payback time was calculated as two years.  相似文献   

12.
Today many WWTPs are equipped with different on-line instruments for automatic and manual control of the process. The use of computerised systems for data acquisition gives us new possibilities to evaluate collected data. This study shows the possibilities and potentials in using standard equipment, simple calculations and the biological stage as a measuring cell for activity determinations.Evaluation of data from Henriksdal and Bromma WWTP give some examples from the biological stage where activity can be calculated on-line. The calculation of Oxygen Uptake Rates, OUR, can be used in several ways: a) Estimation of the overall activity in the aerated part of biological stage, b) Calculations of the load of oxygen consuming substanses on the aerated basin, c) Calculation of nitrification rate, d) Estimation of necessary aerated volume, e) Rapid detection of inhibition of the nitrification (and other oxygen consuming reactions). One advantage with these calculations is the fast response to changes.  相似文献   

13.
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.  相似文献   

14.
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.  相似文献   

15.
A mechanistic model has been developed to model ammonia removal in aerated facultative lagoons. Flow is modeled through the water column by a continuously stirred tank reactor and exchanges between the sludge layer and the water column are simulated by a solids separator. The biological model is based on an activated sludge model with reactions added for anaerobic bacterial growth and degradation of inert organic material. Results show that the model is able to predict seasonal variation in ammonia removal as well as sludge accumulation in the lagoons.  相似文献   

16.
Aerobic biological treatment of digested sludge was studied in a continuously operated laboratory set-up. An aerated reactor was filled with thermophilically digested sludge from the Moscow wastewater treatment plant and inoculated with special activated sludge. It was then operated at the chemostat mode at different flow rates. Processes of nitrification and denitrification, as well as dephosphatation, occurred simultaneously during biological aerobic treatment of thermophilically digested sludge. Under optimal conditions, organic matter degradation was 9.6%, the concentrations of ammonium nitrogen and phosphate decreased by 89 and 83%, respectively, while COD decreased by 12%. Dewaterability of digested sludge improved significantly. The processes were found to depend on hydraulic retention time, oxygen regime, and temperature. The optimal conditions were as follows: hydraulic retention time 3-4 days, temperature 30-35 degrees C, dissolved oxygen levels 0.2-0.5 mg/L at continuous aeration or 0.7-1 mg/L at intermittent aeration. Based on these findings, we propose a new combined technology of wastewater sludge treatment. The technology combines two stages: anaerobic digestion followed by aerobic biological treatment of digested sludge. The proposed technology makes it possible to degrade the sludge with conversion of approximately 45% volatile suspended solids to biogas, to improve nitrogen and phosphorus removal in reject water from sludge treatment units, and to achieve removal of malodorous substances after 8-9 days of anaerobic-aerobic sludge treatment.  相似文献   

17.
While biological phosphorus removal (BPR) has been practised for 30 years, up to recently it has been restricted mainly to activated sludge processes, with the corresponding need for large basin volumes. Yet, research with biofilm reactors showed that the principle of alternate anaerobic and aerated conditions was applicable to fixed bacteria by changing the conditions in time rather than in space. Attached growth enhanced biological phosphorus removal (EBPR) systems are attractive because of their compactness and capability to retain high biomass levels. However, the phosphorus extraction depends on backwashes to enhance the phosphorus-rich attached biomass, and correct control of unsteady effluent quality created by frequently modified process conditions. Accordingly, EBPR remains a challenging task in terms of combining nitrogen and phosphorus removal using attached growth systems. Nevertheless, a combination of activated sludge and biofilm carriers, in the integrated fixed-film activated sludge system, provides treatment opportunities not readily available using suspended growth systems. Current practice is only at the beginning of exploiting the full potential of this combination, but the first full-scale results show that compact tankage and low nutrient results based on biological principles are possible.  相似文献   

18.
The evolution of Czech standards requires higher efficiency of nutrient removal from municipal wastewaters. At the beginning of the last decade of 20th century, a new activated sludge configuration called R-AN-D-N process has been described, successfully tested and now largely used at several wastewater treatment plants (WWTP) in the Czech republic. The main feature of the R-AN-D-N process is the introduction of a regeneration zone in sludge recycle, which enables to increase sludge age in the system without any substantial increase in WWTP volume. Performances of three Czech large WWTP with R-AN-D-N configuration have been monitored and compared within a period of one and a half years. The results confirmed excellent nutrient removal efficiency for wastewaters with different proportion between sewage and industrial effluents. Two of three monitored WWTP received wastewaters from breweries (Budweiser and Pilsner Urquell). The settleability of activated sludge from all three WWTP was correct, with SVI values usually ranging from 50 to 150 ml/g. Monitoring of sludge composition indicated proliferation of several filamentous bacteria, particularly types 0581, 0092 and M. parvicella. No severe bulking events were observed. Finally, the operational costs expressed in CZK (Czech crown: 1 CZK = [see symbol in text]0.0322) per cubic metre of treated sewage or per capita amounts respectively from 2.24 to 6.52, and from 285 to 342.  相似文献   

19.
Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.  相似文献   

20.
赵法鑫  王元  李琳 《水利水电技术》2019,50(12):157-163
通过系统试验分别对布置普通斜板、翼片式斜板和无斜板时的矩形沉砂池在表面负荷为5.6~88 m~3/h·m~2共计12个工况下的沉降特性开展研究。试验分别选用了中值粒径为0.089 mm、不均匀系数为4.01、密度为2.45 t/m~3的天然沙和均一粒径为0.8~1.2 mm、密度为1.35 t/m~3的模型沙(核桃沙)进行试验。结果表明,在表面负荷小于80 m~3/h·m~2时,翼片式斜板沉砂池受颗粒物理性质如密度、粒径和黏性的影响较小,其翼片槽间特有的涡流区和环流区使其截砂率均高于普通斜板和无斜板沉砂池。当表面负荷为48 m~3/h·m~2与56 m~3/h·m~2时,翼片式斜板沉砂池的优势最为突出,截砂率高于其他二者约15%~20%。当表面负荷高于80 m~3/h·m~2时,翼片式斜板沉砂池内的副流流速随主流流速增大,阻碍了颗粒沉降,三种沉砂池的截砂率基本相同。随表面负荷的增大,各个沉砂池的二次悬浮逃逸出的沙量随之增多,在表面负荷小于48 m~3/h·m~2时,普通沉砂池的逃逸量约是普通斜板与翼片式斜板沉砂池的1.5倍。当表面负荷大于56 m~3/h·m~2时,翼片式斜板沉砂池的逃逸量仅约为其他两沉砂池的60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号