首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过催化加氢反应产物3,4-二氯苯胺的热稳定性实验,得出产物中的胺基盐酸盐不会受热分解成HCl,对精馏设备不会产生腐蚀。通过抑制剂降解实验和产品热稳定性实验得出精馏塔釜温度须控制在190℃以下,可以有效避免抑制剂分解、产品色度变大。采用ASPEN软件对年产5000吨3,4-二氯苯胺产品分离工艺进行模拟和分析,确定精馏分离序列为先脱甲醇,再脱除水和轻组分,最后脱焦油,得到产品。脱甲醇塔常压操作,塔顶甲醇纯度为99.9%,塔底甲醇质量分率10 mg·l-1,理论板数为26,进料位置在第15块板,对应回流量为3000kg·h-1。脱轻塔常压操作,塔底温度175℃,塔底苯胺含量10 mg·l-1,理论板数为26,进料位置在第7块板,回流量为1590 kg·h-1。焦油塔塔底强制循环,产品侧线采出,产品的质量分率可达100%,回流量为1500 kg·h-1,进料位置为第30块。整个分离过程产品的收率为99.15%。  相似文献   

2.
选择丙三醇为萃取剂,采用ASPEN PLUS化工流程模拟软件对萃取精馏法从加氢裂解C9芳烃中脱除茚满的过程进行模拟计算。考察了理论塔板数、进料位置、萃取剂进料位置、溶剂比及回流比等操作参数对萃取精馏分离效果的影响,并通过正交试验对各操作参数进一步优化。结果表明:当理论塔板数为45、进料位置在第24-26块塔板、萃取剂进料位置为第5块塔板、溶剂比为2.0、回流比为1时,萃取精馏塔顶馏出液中茚满的含量可控制在1%以下。  相似文献   

3.
芳烃混合物由炼油厂的石脑油催化重整装置产生,芳烃分离物是重要的化工原料。传统工艺中,采用两塔序列从混合芳烃中依次分离出苯,甲苯,二甲苯和重组分等产品。本文以国内某石化企业实际芳烃分离工艺为研究对象,采用间壁式精馏塔工艺代替传统的两塔序列工艺,使用gPROMS模拟软件对新工艺过程进行建模和模拟计算。通过对间壁塔的回流比、气相分配比、液相分配比、塔顶产品量等参数的优化,在满足产品纯度要求下,得到了最优工艺操作条件。对两种工艺的分离效果的比较分析,表明间壁式精馏塔工艺比传统两塔序列工艺节能19.57%。  相似文献   

4.
采用连续侧线出料精馏法对原料进行预处理,切取正丁醇-异丁醇富集液。采用色谱法在汽液平衡釜上探索正丁醇-异丁醇在溶剂中的分配效果,选择甘油为最适合的萃取溶剂。运用Aspen Plus模拟软件对正丁醇-异丁醇萃取精馏塔进行过程模拟,考察了蒸馏流率、理论塔板数、原料和溶剂的进料位置、回流比、溶剂比对正丁醇异-丁醇混合物分离效果的影响。通过正交化设计优化和验证实验,得到最佳萃取精馏塔的操作条件,即蒸馏流率D9=17 kg/br,理论塔板数N=49,原料进料位置NF--29,溶剂进料位置NS=8,回流比R=6,溶剂比S:F=11:1。研究结果表明在最佳操作条件下,塔顶异丁醇纯度可以提高到99.80%,得率为89.38%,塔底正丁醇纯度可达到97.53%,得率为99.96%,验证实验结果与模拟结果相对误差小于1%。研究结果为进一步实验研究提供基础参数。  相似文献   

5.
Kaibel类型隔板精馏塔可代替传统三塔流程来进行四组分分离,除节能和节省投资外,与需要多块隔板的其它四组分隔板塔构型相比,因其构造简单(只需一块隔板)、更易于工业上实施而具有重要的应用前景。本文提出一种Kaibel塔简捷设计方法,基于模拟软件Aspen Plus中DSTWU模块,构造出Kaibel塔的等效结构。同时,对内部耦合物流(分汽比和分液比)对分离效果的影响进行稳态模拟分析,结果表明,分汽比和分液比的变化对Kaibel塔产物纯度有重要影响,且对侧线产物的影响大于塔顶和塔釜产物,是操作和控制时需要重视的因素。  相似文献   

6.
在精馏塔设计中,计算理论塔板数的方法有图解法、逐板计算法和简捷法等,其中图解法因快捷直观而常被使用。图解法用于精馏塔设计,通常与MATLAB、AspenPlus、CAD、Excel等软件结合使用。在其设计过程中,先根据较有限的气液平衡数据和方程绘制相应的曲线,这样可能会造成一定的误差且曲线的光滑度也较差,从而导致精馏塔理论塔板数的计算精度不高。为提高其精度,本文采用数值分析方法——分段抛物插值法对二元理想体系的气液平衡曲线进行模拟,并结合MATLAB软件和图解法对精馏段操作线、q线和提馏段操作线进行数值计算和绘制曲线以计算精馏塔理论塔板数,从而完成精馏塔的设计。文中选用苯-甲苯物系作为应用实例,计算得出其q点坐标为(0.3626,0.5495),该物系的理论塔板数N为13.3739块(包括再沸器),其中第6.3589块板为加料板。  相似文献   

7.
基于Aspen plus萃取精馏的概念设计及优化   总被引:1,自引:1,他引:0  
本文利用Aspen Plus软件,以醋酸.水体系为例,概念设计和优化萃取精馏过程.热力学模型选择NRTL活度系数方程和Hayden-O'Connell逸度系数方程,采用Aspen Plus的DSTWU模块,确定萃取精馏塔和溶剂回收塔的初始参数.在初始参数下,利用Aspen Plus的RadFRac模块对2塔精算,并利用Sensitivity模块,分别优化2塔的原料和萃取剂进料位置、回流比、萃取剂对原料的进料比等参数.设计和优化结果为:萃取精馏塔塔板数为30,原料进料板为第8块,萃取剂的进料板为第3块,回流比为3,萃取剂与原料进料比(质量)为1.6;溶剂回收塔塔板数为20,进料板为第7块,回流比为2.此参数下,利用RadFRac模块进行全流程模拟,结果显示,产品冰醋酸的质量分数达0.9975,2塔再沸器总热负荷为6545 kW,生产1t冰醋酸耗费蒸汽(1 MPa)量为4.25 t,与文献报道的普通精馏过程相比,可节约能耗52.23%.概念设计和优化的结果对工业化设计和生产具备指导意义.  相似文献   

8.
间壁式精馏塔(DWC)利用间壁形成特殊的塔内部结构,从而实现精馏过程的节能以及过程设备的综合。在实际生产中待分离三组分原料组成、间壁安装位置将影响间壁式精馏塔的节能效果。本文以苯-甲苯-二甲苯(BTX)三组分精馏为研究对象,使用gPROMS过程模拟软件,建立基于MESH方程的三类典型间壁式精馏塔模型,研究当进料组成和产品纯度一定时,三类典型间壁安装位置的间壁式精馏塔的能量投入情况,探究间壁式精馏塔选用的一般原则。计算结果表明,对本研究体系,在进料轻组分摩尔比小于0.5时或中间组分大于0.4时亦或重组分大于0.2小于0.6时,应选用完全热耦合间壁式精馏塔;只有在轻组分较多时,选用间壁式侧线提馏塔;在重组分较多时,选用间壁式侧线精馏塔。本文对三类典型间壁式精馏塔分离不同组成原料的节能情况进行分析,可以为间壁塔的设计选用提供一定的参考。  相似文献   

9.
基于乙酸乙酯与甲醇的共沸组成随压力的变化较为敏感的特性,提出采用变压精馏分离乙酸乙酯与甲醇的工艺。以NRTL方程为热力学模型,利用ASPEN PLUS模拟软件对此分离过程进行模拟计算,并由汽液相平衡数据对NRTL方程中二元交互作用参数进行回归。考察了高压塔与常压塔的理论塔板数、进料位置及回流比对分离效果的影响。结果表明,变压精馏可用于乙酸乙酯与甲醇的分离,最佳的工艺条件为:高压塔操作压力0.7 MPa,理论板数46,第35块塔板进料,回流比2,塔釜得到摩尔分数大于99.14%以上的乙酸乙酯;常压塔操作压力0.1 MPa,理论板数50,第10块塔板进料,回流比3,塔釜可得到摩尔分数大于99.98%以上的甲醇。  相似文献   

10.
运用化工流程模拟软件Aspen Plus,对乙醇脱氢生产乙酸乙酯的工艺流程进行模拟计算分析,建立了10 wt/a乙酸乙酯生产工业过程的详细流程,最终乙酸乙酯产品纯度达99.98%,收率可达98.26%。对精馏工段关键的乙醇塔和粗塔组成的差压精馏体系进行了灵敏度分析,重点考察了进料板位置、回流比、塔顶采出量等工艺参数对精馏塔分离效果和操作能耗的影响,得到优化的参数,即乙醇塔新鲜进料板位置为第12块,循环物料进料位置为第9块,回流比2.10,塔顶采出量为33500 kg/hr:粗塔进料板位置为第9块,回流比为1.43,塔顶采出量为21000 kg/h。本文研究结果为工业上选择合适的设备参数和操作参数提供有力的数据支持。随后对原换热网络进行了进一步优化设计,节省能耗24.56%。  相似文献   

11.
由于甲醇/乙酸乙酯和甲醇/乙酸甲酯体系均存在共沸现象,因此对于甲醇/乙酸乙酯/乙酸甲酯三元混合物,采用普通的精馏方法很难将甲醇有效分离。本文采用萃取精馏的方法,首先分别比较了不同萃取剂对甲醇/乙酸乙酯和甲醇/乙酸甲酯体系相对挥发度的影响,并选择较为合适的萃取剂。接着利用流程模拟软件Aspen Plus对萃取精馏过程进行了全流程模拟,并对溶剂比、萃取塔理论塔板数、原料与萃取剂进料位置、萃取剂进料温度等因素对分离效果的影响进行了考察,得出了如下较优的工艺参数:萃取塔理论板数为80块,萃取塔原料进料位置为第19块板,萃取塔萃取剂进料位置为第3块板,萃取塔萃取剂进料温度为40℃,溶剂比为3.0;回收塔理论板数为5块,进料位置为第3块板。通过萃取精馏分离工艺,得到的甲醇产品纯度达到0.999以上,其中的羰基化合物质量含量小于20×10~6,符合国标GB338-2011中优等品的标准。  相似文献   

12.
煤制乙二醇工艺过程是重要的煤化工过程,目前对其的研究都未涉及到工艺参数的优化。本文采用Aspen Plus软件,结合煤制乙二醇工艺过程中亚硝酸甲酯合成反应精馏的特点,选用合适的反应动力学模型,对亚硝酸甲酯的反应精馏塔进行模拟。利用灵敏度分析模块,考察了全塔理论板数,进料位置和回流比等对塔顶亚硝酸甲酯质量流率的影响。研究发现全塔理论板数为41块、气相进料和液相甲醇最佳进料塔板位置分别为第35块和第1块、质量回流比为0.156时,得到的塔顶亚硝酸甲酯的质量流率比较高,该值与设计值误差为1.9%。本文的研究结果将为工业生产提供重要的参考。  相似文献   

13.
利用化工流程模拟软件,选用Wilson模型作为气液平衡的计算模型,对萃取精馏分离乙醇-甲苯共沸物的过程进行模拟研究。考察不同溶剂对乙醇一甲苯相对挥发度的影响,筛选出适宜的溶剂为正丙苯。对溶剂和原料的进料位置、溶剂比、回流比和溶剂进料温度对萃取精馏效果的影响进行了模拟分析。在保证产品乙醇、甲苯质量分数均在0.998以上的条件下,萃取精馏塔模拟优化结果为:全塔总理论板数35块,溶剂进料位置第16块塔板、原料进料位置第32块塔板、溶剂比1.2、回流比1.6、溶剂进料温度为常温。模拟结果可用于指导实际过程分析和设计。  相似文献   

14.
建立一种利用分壁式萃取精馏塔制取高纯度甲缩醛的新工艺,并用AspenPlus软件对该工艺进行模拟和优化。最优工艺参数为:主塔塔板数39,隔板底端位置在第3l块板,原料进料在第17块板,萃取剂进料在第4块扳,回流比为0.9,溶剂比为1.0,气相分配比为0.12。最优参数下的严格模拟结果显示:本工艺可得到质量分数99.96%的甲缩醛和99.24%的甲醇;与常规萃取精馏工艺相比,再沸器和冷凝器热负荷分别降低14.8%和16.9%。说明分壁式萃取精馏塔制取高纯度甲缩醛不仅技术上可行,而且能减少一个塔的投资和节约分离过程的能耗,在经济上也具有显著的优势。  相似文献   

15.
二恶烷、乙醇和水三者互溶,相互之间存在二元共沸及三元共沸,且二恶烷和水常压下沸点接近,普通精馏难以分离。本文选取了合适的萃取剂二甲基亚砜(DMSO),采用萃取精馏从塔顶分离出二恶烷和乙醇,利用加压精馏消除共沸,实现二恶烷和乙醇的分离;萃取精馏塔釜物料经萃取剂回收塔减压精馏从塔釜回收二甲基亚砜,循环至萃取精馏塔中,塔顶分离出水。采用流程模拟软件Aspen Plus对上述流程进行了全流程模拟计算,模拟结果表明:采用上述方法可以实现二恶烷、乙醇和水的分离,分离后二恶烷、乙醇和水的摩尔纯度均达到99%;在此基础上,以萃取精馏塔为例,讨论了理论板数、萃取剂进料位置和进料温度、原料进料位置、溶剂比、回流比对分离效果的影响,完成了全流程工艺参数的优化,利用热集成及双效精馏的方式节省能耗15.8%。  相似文献   

16.
采用用户模型技术,运用Fortran语言编写反应动力学子程序,并将其嵌入Aspen Plus精馏过程中,从而在Aspen Plus平台实现了MTBE反应精馏过程的动力学模拟,结果表明,所建用户模型MrBE反应精馏塔内温度、液相组成分布模拟值较好地吻合了文献值。以MTBE收率及纯度作为目标函数,研究了精馏塔相关参数改变对目标函数的影响,得到的优化条件分别如下:操作压力为1100 kPa,回流比为6,甲醇进料位置为第10块板,反应段塔板数为8块,此时MTBE收率为95.53%,纯度为99.2%。  相似文献   

17.
化工流程模拟软件不断发展,越来越多的化工装置开始采用流程模拟来优化装置的操作。基于精馏过程的实际运行数据,建立了能够良好描述装置实际运行工况的模型,实现了对芳烃联合装置邻二甲苯精馏过程的流程模拟。利用Aspen Plus建立装置模型,按照工艺条件及产品分离要求,使用设计规定工具,对采用精馏方式从混合C8~C10物料中分离邻二甲苯(OX)工艺进行研究。模拟结果与实际工业过程数据相符,能够满足工业建模的要求。基于模型,研究了进料塔板位置、回流比和塔顶采出量等变量对装置稳定运行的影响,从进料塔板,塔顶采出量和进料组分等方面提出了优化建议。研究结果表明:精馏塔塔顶采出量为OX产品主要杂质异丙苯(IPB)含量的显著影响因素。据此提出了包括回流比和塔顶采出量参数的优化方案,可以使主要杂质异丙苯的含量下降40%的同时,每年可节省燃料成本。  相似文献   

18.
反应精馏合成乙酸乙酯的实验研究与模拟   总被引:1,自引:0,他引:1  
本文以Amberlyst-36Wet离子交换树脂为催化剂,采用间歇搅拌釜式反应器,在消除内外扩散影响的条件下,测得不同温度下反应速率常数.研究自制反应精馏塔中(直径25 mm,高2.2 m)乙酸乙酯的合成工艺,得到反应精馏的工艺参数.在实验基础上,建立改进工艺的Aspen Plus模拟流程图.实验结果与模拟计算值吻合良好,表明所建立的Aspen Plus模型能够很好地描述反应精馏合成乙酸乙酯过程.以乙醇转化率、产品乙酸乙酯的收率和塔顶油相乙酸乙酯的质量分率为考察目标,通过流程模拟和灵敏度分析,确定该工艺的最佳工艺参数:精馏段、反应段和提馏段的理论板数分别为9、7和7;醋酸和乙醇的最佳进料位置在第9块和第16块塔板上;回流比R为1.6.在此工艺条件下,产品乙酸乙酯的含量是95.2%(wt),乙醇转化率为96.1%.  相似文献   

19.
采用Aspen Plus软件对连续侧线精馏提取重C_(10)芳烃中三甲基萘进行模拟,分别考察连续侧线精馏过程中塔理论塔板数(N)、原料进料位置(N_f)、侧线出料位置(N_c)、侧线出料量(D_c)、塔顶馏出量(D)及回流比(R)对分离过程的影响,并将模拟结果与顺序精馏模拟结果进行对比可知,通过连续侧线精馏可得到最佳分离结果。建立实验装置对连续侧线精馏模拟结果进行验证实验,实验与模拟结果一致。研究结果为后续进一步放大试验提供理论基础。  相似文献   

20.
为获得合成气经浆态床一步合成二甲醚最优的分离流程和工艺参数,运用化工流程模拟软件Aspen Plus对3种分离工艺过程进行了模拟分析。提出用水吸收一步反应气相产物中的二甲醚,再用两个精馏塔分离吸收液的工艺流程,模拟过程中汽液相平衡采用NRTL热力学模型。对从吸收液中分离二甲醚的3种方法进行了模拟计算值的比较,并与文献中的实验值做了比较,最后采用了先通过第一精馏塔塔顶分离出CO2,塔底出甲醇和二甲醚,再通过第二精馏塔分离二甲醚和甲醇的方法。此种分离流程可使二甲醚的回收率达到91.1%,产品浓度达到99.96%,高于文献报道的结果。并对吸收塔的温度、操作压力、液气比、塔板数等参数以及2个精馏塔的温度、压力、塔板数等参数进行了优化模拟,确定了优化的工艺和设备参数。最优的分离流程尚需经过回收率和操作费用综合经济核算来确定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号