首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate the risk and efficacy of pulmonary lobectomy in dogs with pneumonia. DESIGN: Retrospective study. ANIMALS: 59 dogs with pneumonia. PROCEDURE: Review of medical records and telephone conversations. RESULTS: 54.2% of dogs had resolution of pneumonia after lobectomy, 20.3% died in the perioperative period, and 25.4% survived the perioperative period but pneumonia did not resolve. Pneumonia was caused by bacteria (25 dogs), fungi (12), foreign bodies (8), parasites (1), viruses (1), and allergies (1). In 11 dogs, the etiologic agent was not isolated. Bacterial or fungal pneumonias were significantly less likely to resolve compared with foreign body pneumonia or when an etiologic agent was not isolated. Perioperative mortality rate increased significantly with an increase in number of pulmonary lobes removed. Complications during surgery significantly increased perioperative mortality rate. Surgical era (1972 to 1983 vs 1984 to 1994) was a significant predictor of mortality, with the odds of dying in the perioperative period being 11 times greater between 1972 to 1983. The odds of failure to resolve pneumonia was 3 times greater during 1972 to 1983. CLINICAL IMPLICATIONS: Number of pulmonary lobes removed and complications during surgery significantly affect perioperative mortality rate. Identification of etiologic agents may help in predicting dogs likely to resolve pneumonia after surgery.  相似文献   

2.
The actions of serotonin on rat basolateral amygdala neurons were studied with conventional intracellular recording techniques and fura-2 fluorimetric recordings. Bath application of 5-hydroxytryptamine (5-HT or serotonin) reversibly suppressed the excitatory postsynaptic potential in a concentration-dependent manner without affecting the resting membrane potential and neuronal input resistance. Extracellular Ba2+ or pertussis toxin pretreatment did not affect the depressing effect of 5-HT suggesting that it is not mediated through activation of Gi/o protein-coupled K+ conductance. The sensitivity of postsynaptic neurons to glutamate receptor agonist was unaltered by the 5-HT pretreatment. In addition, the magnitude of paired-pulse facilitation was increased in the presence of 5-HT indicating a presynaptic mode of action. The effect of 5-HT was mimicked by the selective 5-HT1A agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and was blocked by the selective 5-HT1A antagonist 1-(2-methoxyphenyl)-4[4-(2-phthalimido)butyl]piperazine oxadiazol-3-yl]methyl]phenyl]-methanesulphonamide. In contrast, the selective 5-HT2 receptor antagonist ketanserin failed to affect the action of 5-HT. The effects of 5-HT and 8-OH-DPAT on the high K+-induced increase in [Ca2+]i were studied in acutely dissociated basolateral amygdala neurons. High K+-induced increase in [Ca2+]i was blocked by Ca2+-free solution and Cd2+ suggesting that Ca2+ entry responsible for the depolarization-evoked increase in [Ca2+]i occurred through voltage-dependent Ca2+ channels. Application of 5-HT and 8-OH-DPAT reduced the K+-induced Ca2+ influx in a concentration-dependent manner. The effect of 5-HT was completely abolished in slices pretreated with Rp-cyclic adenosine 3',5'-monophosphothioate (Rp-cAMP), a regulatory site antagonist of protein kinase A, suggesting that 5-HT may act through a cAMP-dependent mechanism. Taken together, these results suggest that functional 5-HT1A receptors are present in the excitatory terminals and mediate the 5-HT inhibition of synaptic transmission in the amygdala.  相似文献   

3.
Cytosolic acidification stimulates an influx of Ca2+ which results in shedding of the two flagella of Chlamydomonas. Ca2+ influxes are also involved in the photoresponses of this alga, but it is not understood how the acidification-activated Ca2+ influx is distinguished from the Ca2+ influxes which mediate phototaxis and the photophobic response. The present study focuses on the deflagellation-inducing Ca2+ influx pathway. Influx occurs through an ion channel or transporter with low abundance or low permeability to Ca2+ (approximately 500 fmol/s/10(6) cells in 50 microM Ca2+). Ca2+ influx was potently blocked by Cd3+ (EC50 approximately 5 microM), but was insensitive to Cd2+ (Quarmby, L.M., and H.C. Hartzell. 1994. J. Cell Biol. 124:807) and organic blockers of Ca2+ channels including SKF-96365 (up to 100 microM) and flufenamic acid (up to 1 mM). Experiments with a flagella-less mutant (bald-2), isolated flagella, and a blocker of flagellar assembly (colchicine) indicated that the acidification-stimulated Ca2+ influx pathway is not localized to the flagellar membrane. The acid-stimulated influx pathway was transiently inactivated after cells shed their flagella. Inactivation did not occur in the deflagellation mutant, fa-1, although acidification-stimulated Ca2+ influx was normal. This suggests that inactivation of this pathway in wild-type cells is probably not a direct consequence of acidification nor of Ca2+ influx, but may be related to deflagellation. Recovery of deflagellation-inducing Ca2+ influx occurred within 30 min after a 30 s exposure to acid and did not require flagellar assembly. The regulation, drug sensitivity, and subcellular localization identify acidification-stimulated Ca2+ influx as a specific Ca2+ entry pathway distinct from established Ca2+ channels.  相似文献   

4.
The effects of cyclopiazonic acid and thapsigargin, selective inhibitors of the endoplasmic reticulum Ca2+-ATPase pump, on the platelet aggregation were investigated using washed rat platelets prepared by chromatography on Sepharose 2B columns. In Ca2+-free medium, cyclopiazonic acid and thapsigargin did not induce aggregation, but in the presence of 1 mM Ca2+, platelet aggregation was induced in a concentration-dependent manner. Cyclopiazonic acid- and thapsigargin-induced platelet aggregation was blocked by 1 mM Ni2+ but not by 100 microM indomethacin or 1 microM nifedipine. In aequorin-loaded platelets, cyclopiazonic acid and thapsigargin caused sustained elevation of the cytosolic Ca2+ concentration, an effect which was blocked by Ni2+, a non-selective Ca2+ channel blocker and SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenyl]-1H-imidazole hydrochloride), a putative receptor-operated Ca2+ channel antagonist. The above results indicated that both cyclopiazonic acid and thapsigargin induced platelet aggregation and elevation of cytosolic Ca2+ concentration, that extracellular Ca2+ was essential for cyclopiazonic acid- and thapsigargin-induced platelet aggregation, and that platelet aggregation may be associated with Ca2+ influx through Ca2+ store-activated Ca2+ channels.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

6.
7.
Although idiopathic membranous nephropathy (IMN) is thought to represent a diffuse glomerulopathy, it was found that three of 31 children histologically diagnosed as IMN showed focal and segmental deposition of immunoglobulin G (IgG) and C3 on the glomerular capillary walls. The present study attempted to comparatively investigate clinical and pathological features of the diffuse group and the focal segmental group in 31 IMN children. Immunofluorescence study revealed that 28 of 31 IMN exhibited diffuse granular deposition of IgG along glomerular capillary walls. In contrast, focal and segmental deposition of IgG and C3 was noted in three children with IMN. In addition, focal and segmental electron-dense deposits were identified in these cases. In two children of the focal segmental group, immunofluorescent patterns of IgG deposition were unchanged even at the second biopsy. The focal segmental form of IMN tended to occur in younger children than diffuse IMN. However, other clinical parameters such as the range of proteinuria, hematuria, serum albumin and prognosis did not show any significant differences between both groups. Electrophoretic profiles of urinary proteins on sodium dodecylsulfate-polyacrylamide gel electrophoresis were not different between both groups. It is proposed that the focal segmental form of IMN may have a distinctive glomerulopathy from the typical form of IMN.  相似文献   

8.
The aim of the present investigation was to study the functional alterations in the stomatognathic system following orthodontic-surgical management of skeletal vertical excess problems. The sample comprised 43 patients who received combined orthodontic-surgical treatment including bilateral vertical ramus osteotomy for posterior repositioning and counterclockwise rotation of the mandible (n = 26) or Le Fort I osteotomy for maxillary impaction (n = 17). All subjects were examined within 1 week before operation and 6 months postsurgery. Methods of examination included: (a) evaluation of dysfunction by means of a clinical index, (b) measurement of mandibular range of motion, (c) assessment of the number and intensity of occlusal contacts, and (d) tomographic evaluation of condyle-fossa relationships. The results of the study indicated that postoperatively (a) there was an increase of patients with dysfunction in the mandibular osteotomy group and a decrease of patients with dysfunction in the maxillary osteotomy group; (b) the maximum interincisal opening decreased significantly in the mandibular osteotomy group; (c) there was a significant increase in the number and intensity of occlusal contacts in both groups; and (d) the shortest posterior and anterior interarticular distances increased significantly in the mandibular osteotomy group.  相似文献   

9.
The synthesis and antihypertensive activity of a series of 2,4-dioxoimidazolidin-1-yl and perhydro-2,4-dioxopyrimidin-1-yl ergoline derivatives are reported. The oral antihypertensive activity was studied in spontaneously hypertensive rats (SHRs) by measuring systolic blood pressure by an indirect tail-cuff method at different times after treatment. The prolactin lowering activity (indirectly measured by the nidation test) in rats and the oral acute toxicity in mice were also studied. The results of this study revealed potent antihypertensive ergoline derivatives devoid of side-effects related to the dopaminergic stimulation and the importance of the delta 9,10 double bond for conferring high potency within these compounds.  相似文献   

10.
Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage-gated N-type calcium channels. These channels interact with the SNARE proteins, which are core components of the exocytosis process, via the synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their alpha1B subunit. Interruption of this interaction by competing synprint peptides inhibits fast, synchronous transmitter release. Here we identify a voltage-dependent, but calcium-independent, enhancement of transmitter release that is elicited by trains of action potentials in the presence of a hyperosmotic extracellular concentration of sucrose. This enhancement of transmitter release requires interaction of SNARE proteins with the synprint site. Our results provide evidence for a voltage-dependent signal that is transmitted by protein-protein interactions from the N-type calcium channel to the SNARE proteins and enhances neurotransmitter release by altering SNARE protein function.  相似文献   

11.
12.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

13.
Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.  相似文献   

14.
We hypothesized that by limiting the Na+ and Ca2+ loading by a blocker/inhibitor of the Na+ channel (lidocaine), Na+ overload (R56865: N-[1-[4-(4-fluorophenoxy)butyl]-4-piperidinyl]-N-methyl-2-benzothiazo lamine), Ca2+ channel (verapamil), Na+ -H+ exchange (ethylisobutyl amiloride) or of Na+ -Ca2+ exchange (No. 7943: 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate), it should be possible to reduce ischemia/reperfusion-induced arrhythmias. To test this hypothesis, we used anaesthetized rats subjected to 5 min of coronary artery occlusion followed by 10 min of reperfusion to study antiarrhythmic effects of above compounds on reperfusion-induced ventricular premature beats, ventricular tachycardia, and reversible and irreversible ventricular fibrillation. Compound or saline was administered as an intravenous bolus injection at 5 min before ischemia. Pretreatment with lidocaine (5 mg/kg), verapamil (0.63 mg/kg), R56865 (0.63 mg/kg) or ethylisobutyl amiloride (1.25 mg/kg) significantly reduced or abolished all types of ventricular arrhythmias. However, pretreatment with verapamil was associated with second or third degree heart block in 3 out of 12 animals. Pretreatment with No. 7943 did not significantly influence the ischemia/reperfusion-induced ventricular arrhythmias. The present results suggest that both intracellular Na+ -and Ca2+ -loading play important roles in reperfusion-induced ventricular arrhythmias and the inhibition of Na+ -Ca2+ exchange to limit Ca2+ loading probably does not play any important role in ischemia/reperfusion-induced arrhythmias in anaesthetized rats.  相似文献   

15.
16.
In the isolated CNS of Lymnaea, a peptidergic neuron termed VD4 makes monosynaptic connections with identified pedal A cluster neurons. In this study, the pedal A (PeA) neurons were further divided into two subgroups depending upon whether they received an inhibitory or excitatory input from VD4. PeA cells inhibited by VD4 were designated PeA(I), whereas those excited by VD4 were termed PeA(E). Both inhibitory and excitatory effects of VD4 stimulation on the PeA(I) and PeA(E) cells, respectively, were mimicked by exogenous FMRFamide in culture (in vitro), implicating this or a related peptide as the transmitter utilized at the VD4-to-PeA synapses. We tested the ability of the general anesthetic, halothane, to affect either the inhibitory or the excitatory peptidergic synapses between VD4 and the PeA neurons, both in the isolated CNS (in vivo) and at the in vitro reconstructed synapses. In the presence of 1% halothane, the excitatory synaptic potential between VD4 and the PeA(E) cells was either depressed or completely abolished, whereas the inhibitory synaptic potential between VD4 and the PeA(I) cells was unaffected in the presence of 1% halothane. The inhibitory potential between VD4 and the PeA(I) cells was, however, blocked in 2% halothane. In order to determine halothane' 5 site of action, exogenous FMRFamide was applied to both PeA(E) and PeA(I) cells in the presence of 1 or 2% halothane. In 1% halothane, the excitatory responses produced by FMRFamide were substantially reduced or abolished, whereas the inhibitory responses to FMRFamide were maintained and enhanced in duration in 1% halothane. In 2% halothane, the inhibitory responses to exogenous FMRFamide remained unchanged. It, therefore, appears that halothane exerts effects at both the pre- and postsynaptic level of the synapse, although presynaptic transmitter release is probably not substantially affected until a concentration of 2% halothane is reached. Our data provide the first evidence that clinically relevant concentrations of halothane (1-2%) affect both excitatory and inhibitory peptidergic synaptic transmission between identified neurons in the nervous system. Furthermore, excitatory transmission is abolished at lower anesthetic concentrations than inhibitory transmission.  相似文献   

17.
The role of L-type Ca2+ channels in the induction of synaptic plasticity in hippocampal slices of aged (22-24 months) and young adult (4-6 months) male Fischer 344 rats was investigated. Prolonged 1 Hz stimulation (900 pulses) of Schaffer collaterals, which normally depresses CA3/CA1 synaptic strength in aged rat slices, failed to induce long-term depression (LTD) during bath application of the L-channel antagonist nifedipine (10 microM). When 5 Hz stimulation (900 pulses) was used to modify synaptic strength, nifedipine facilitated synaptic enhancement in slices from aged, but not young, adult rats. This enhancement was pathway-specific, reversible, and impaired by the NMDA receptor (NMDAR) antagonist DL-2-amino-5-phosphonopentanoic acid (AP5). Induction of long-term potentiation (LTP) in aged rats, using 100 Hz stimulation, occluded subsequent synaptic enhancement by 5 Hz stimulation, suggesting that nifedipine-facilitated enhancement shares mechanisms in common with conventional LTP. Facilitation of synaptic enhancement by nifedipine likely was attributable to a reduction ( approximately 30%) in the Ca2+-dependent K+-mediated afterhyperpolarization (AHP), because the K+ channel blocker apamin (1 microM) similarly reduced the AHP and promoted synaptic enhancement by 5 Hz stimulation. In contrast, apamin did not block LTD induction using 1 Hz stimulation, suggesting that, in aged rats, the AHP does not influence LTD and LTP induction in a similar way. The results indicate that, during aging, L-channels can (1) facilitate LTD induction during low rates of synaptic activity and (2) impair LTP induction during higher levels of synaptic activation via an increase in the Ca2+-dependent AHP.  相似文献   

18.
Glutathione (GSH) was measured using HPLC-electrochemical detection in bronchoalveolar lavage fluid from 28 neonates for up to 21 days after birth. GSH levels varied from 0.1-11.2 mumol l-1 (with a geometric mean concentration of 1.3 mumol l-1). GSH in epithelial lining fluid was estimated using the urea dilution method at 15.0 mumol l-1 (range 0.5-196 mumol l-1), which is significantly lower than observed in adult subjects. There was an L shaped relationship between GSH and the two markers of oxygen therapy, oxygen index and FiO2. The lowest GSH levels were associated with the group of infants with the most severe airways problems who required high oxygen.  相似文献   

19.
We previously reported that prostaglandin D2 (PGD2) specifically elevates intracellular cyclic AMP in nonchromaffin cells isolated from bovine adrenal medulla (Biochim. Biophys. Acta (1989) 1011, 75-80). Here we again found that PGD2 increased intracellular Ca2+ concentration ([Ca2+]i) in freshly isolated nonchromaffin cells and investigated the cellular mechanisms of PGD2-induced [Ca2+]i increase using the Ca2+ indicator fura-2 and a fluorescence microscopic imaging system. Treatment of the cells with PGD2 receptor agonists BW245C and ZK110841 resulted in both marked stimulation of cyclic AMP formation and an increase in [Ca2+]i. The [Ca2+]i response was also induced by bypassing of the receptor with forskolin, a direct activator of adenylate cyclase, but not by PGE2 or PGF2 alpha both of which are devoid of the ability to generate cyclic AMP in the cells. These cyclic AMP and [Ca2+]i responses induced by PGD2 were completely blocked by the PGD2 receptor antagonist BWA868C. The time-course of cyclic AMP production stimulated by PGD2 coincided with that of the [Ca2+]i increase. While the Ca(2+)-mobilizing hormone bradykinin stimulated a rapid inositol phosphate accumulation in nonchromaffin cells, PGD2 did not stimulate it significantly. Removal of extracellular Ca2+ markedly reduced the Ca2+ response to PGD2 in magnitude and duration, but did not alter the peak [Ca2+]i response to bradykinin. These results demonstrate that PGD2 receptor activation induces the increase in [Ca2+]i via cyclic AMP mainly by increasing the Ca2+ influx from the outside, unlike inositol trisphosphate which causes release of Ca2+ from internal stores.  相似文献   

20.
MalK is the ATP-hydrolyzing subunit of the binding protein-dependent ATP-binding-cassette (ABC) transport system for maltose from Salmonella typhimurium. In a recent hypothesis, Glu64 and Glu94 of MalK were proposed as candidates for 'catalytic carboxylate', common to ATP- and GTP-hydrolyzing proteins [Yoshida and Amano (1995) FEBS Lett. 359, 1-5]. Substitution of both residues and, additionally, Glu74 by either glutamine or glycine and valine, respectively, had no deleterious effect on maltose transport. Thus, our data disprove the above notion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号