首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用等温溶解平衡法对川西平落坝地下卤水三元子体系KCl+K2B4O7+H2O进行研究,测定该体系平衡液相的溶解度及物化性质(密度、折光率)。结果表明:该三元体系属简单共饱型,无复盐或固溶体形成;平衡相图中单变度曲线AE和BE对应的平衡固相分别为K2B4O7.4H2O和KCl。对比该体系298 K和348 K稳定相图:氯化钾、硼酸钾结晶形式相同;在348 K下氯化钾的结晶区明显增大而硼酸钾的结晶区明显减小;随温度的升高,氯化钾对硼酸钾的盐析作用增强。  相似文献   

2.
采用等温溶解平衡法研究了三元体系KBr-K2SO4-H2O在373 K时的相平衡关系,测定了相应温度条件下饱和溶液的溶解度及密度。研究发现:该三元体系为简单共饱和型,无复盐及固溶体形成。根据溶解度数据绘制了相应的平衡溶解度曲线,相图中有1个共饱点,2条单变曲线,2个平衡固相结晶区分别为溴化钾和硫酸钾;对不同温度条件下的KBr-K2SO4-H2O的溶解度做了对比分析和讨论,结果表明:溴化钾对硫酸钾有强烈的盐析作用。此外还简要讨论了该三元体系的密度变化规律。  相似文献   

3.
NaBr-Na_2SO_4-H_2O三元体系323K相平衡研究   总被引:2,自引:1,他引:1  
采用等温溶解平衡法研究了三元体系NaBr-Na2SO4-H2O在323 K的相平衡关系,测定了平衡溶液的溶解度及密度。研究发现,该三元体系为简单共饱和型,无复盐及固溶体形成。根据溶解度数据绘制了相图,相图中有1个共饱点E,2条单变量曲线EF,ED所对应的平衡固相分别为NaBr.2H2O和Na2SO4。在共饱点E处的液相组成(质量分数)分别为NaBr 54.37%,Na2SO40.70%。实验结果表明,NaBr对Na2SO4有较强的盐析作用。简要讨论了密度变化规律,对比了三元体系NaBr-Na2SO4-H2O在不同温度条件下共饱点的液相组成。  相似文献   

4.
采用等温蒸发法进行了MgB4O7-Na2B4O7-H2O三元体系288 K时的介稳相平衡研究,测定了该体系介稳相平衡的溶解度和密度.研究发现该三元体系为简单共饱和型,未见复盐和固溶体形成.根据溶解度数据绘制了相图,相图中有一个三元共饱点、两条单变量曲线.平衡固相为MgB4O7*9H2O 和Na2B4O7*10H2O.在该介稳相平衡中发现MgB4O7的溶解度明显增大.由相图可知:Na2B4O7对MgB4O7有盐溶作用.  相似文献   

5.
采用等温溶解平衡法研究了两个三元体系PbCl_2-ZnCl_2-H_2O和CaCl_2-PbCl_2-H_2O在373 K时的相平衡,测定了平衡溶液的溶解度和密度,并根据溶解度数据和对应的平衡固相绘制了相图和密度-组成图,根据相图对单变量曲线和结晶区进行了讨论。研究发现,两个三元体系均为简单共饱和型,均无复盐和固溶体生成,有一个共饱点,两条单变量曲线,两个结晶区。平衡液相对应的固相由XRD确定,并对实验结果进行了简要的讨论。  相似文献   

6.
采用等温溶解平衡法研究了三元体系NaBr-Na_2SO_4-H_2O和KBr-K_2SO_4-H_2O在高温398 K的相平衡关系,测定了398 K条件下平衡溶液的溶解度。研究发现:两个三元体系均为简单共饱和型,无复盐及固溶体生成。根据溶解度数据绘制了相图,相图中均有一个共饱和点,2个平衡固相结晶区和2条单变量曲线。三元体系NaBr-Na_2SO_4-H_2O所对应的平衡固相为NaBr和Na_2SO_4;KBr-K_2SO_4-H_2O体系对应的平衡固相为KBr和K_2SO_4。对比了上述两个三元体系在不同温度条件下共饱点的液相组成,实验结果表明,NaBr和KBr分别对Na_2SO_4和K_2SO_4有较强的盐析作用。  相似文献   

7.
Li+(K+)/CO32-,B4O72--H2O三元体系288K相平衡研究   总被引:1,自引:0,他引:1  
采用等温溶解平衡法研究了二个三元体系Li+ (K+ ) /CO32 - ,B4 O72 - -H2 O 2 88K时的相平衡及平衡液相的主要物化性质 (密度、电导率、pH)。研究发现 :这二个三元体系均为简单共饱和型 ,无复盐及固溶体形成 ;根据溶解度数据绘制了相图 ,相图中单变量曲线所对应的平衡固相分别为 :Li2 CO3,Li2 B4 O7·3H2 O ;K2 CO3·3 /2H2 O ,K2 B4 O7·4H2 O ;K2 CO3对K2 B4 O7有强烈的盐析作用 ,简单讨论了物化性质的变化规律  相似文献   

8.
《化学工程》2017,(10):37-40
采用等温溶解平衡法研究了三元体系Na_2B_4O_7-MgB_4O_7-H_2O 273 K稳定相平衡关系。测定了该体系平衡时各组分的溶解度,根据实验数据和固相组成绘制了三元体系Na_2B_4O_7-MgB_4O_7-H2O 273 K等温相图。实验结果表明:该体系组分之间没有形成复盐和固溶体,属于简单共饱和型体系;体系的稳定相图由1个共饱点,2条单变量曲线,2个固相结晶区组成,结晶区分别对应Na_2B_4O_7·10H_2O和MgB_4O_7·9H_2O。文中还对该三元体系在不同温度时的稳定相图作了对比分析和讨论。  相似文献   

9.
采用等温溶解平衡法研究了三元体系KCl-K2B4O7-H2O在323 K时的稳定相平衡关系及稳定平衡液相的密度,测定了该三元体系稳定平衡溶液溶解度和密度。研究发现:该三元体系为简单共饱和型,无复盐及固溶体形成。根据溶解度数据绘制了相图,相图中有1个三元共饱点、2条单变量曲线、2个结晶相区,即氯化钾(KCl)结晶区和四硼酸钾(K2B4O7·4H2O)结晶区;平衡固相为KCl和K2B4O7·4H2O。由相图可以看出,KCl对K2B4O7有较强的盐析作用。  相似文献   

10.
针对川西盆地富硼钾溴地下卤水组成,采用等温溶解平衡法研究了三元体系NaBr-Na2SO4-H2O和NaBr-KBr-H2O在373 K时的相平衡,测定了373 K条件下平衡溶液的溶解度和密度,根据实验数据绘制相应的相图和密度图。研究发现:两个三元体系在373 K条件下均属于简单共饱和型,无复盐及固溶体生成。相图中均有一个共饱和点,2个平衡固相结晶区和2条单变量曲线。在三元体系NaBr-Na2SO4-H2O中,平衡固相分别为:NaBr和Na2SO4,三元体系NaBr-KBr-H2O相应的平衡固相分别为:NaBr和KBr。并简单讨论了密度的变化规律。  相似文献   

11.
K_2B_4O_7-Na_2B_4O_7-Li_2B_4O_7-H_2O四元体系288K相平衡研究   总被引:6,自引:2,他引:6  
采用等温溶解平衡法研究了K2 B4O7 Na2 B4O7 Li2 B4O7 H2 O四元体系在 2 88K时的相平衡及平衡液相的主要物化性质(密度、电导率、pH值 )。研究发现 :该四元体系为简单共饱和型 ,无复盐及固溶体形成 ,根据溶解度数据绘制了相图 ,相图中有一个共饱点E ,三条单变度曲线E3 E ,E2 E ,E1 E ;三个结晶区平衡固相分别为K2 B4O7·4H2 O ,Na2 B4O7·10H2 O和Li2 B4O7·3H2 O。实验结果表明K2 B4O7对Na2 B4O7有增溶作用 ,并简要讨论了物化性质的变化规律  相似文献   

12.
采用等温溶解平衡法研究Na2B4O7-NaBr-Na2SO4-H2O四元体系在348 K的相平衡关系,测定了平衡液相的溶解度和密度。根据实验数据绘制相应相图。该四元体系相图中有1个共饱点E,3条单变量曲线E1E,E2E,E3E,3个结晶区的平衡固相分别为:NaBr,Na2SO4和Na2B4O7·5H2O。研究结果表明:该四元体系无复盐和固溶体生成,属于简单四元体系,NaBr对Na2B4O7·5H2O和Na2SO4有较强的盐析作用。并对NaBr和Na2B4O7在不同温度下含有的结晶水数进行了对比分析,简要讨论了密度变化规律。  相似文献   

13.
采用等温溶解平衡法研究了348 K时交互四元体系Na+,K+//Br-,B4O27--H2O的相平衡及平衡液相,测定了平衡液相的溶解度以及密度,补充了该体系在348 K下的溶解度和密度数据。研究结果发现,该体系属于简单共饱和体系,无复盐和固溶体生成。根据实验数据绘制了相应的相图、密度-质量分数图和含水量图,相图中有2个共饱点,5条单变量曲线,4个结晶区。4个结晶区的平衡固相分别为:Na2B4O7.5H2O,K2B4O7.4H2O,KBr和NaBr。从相图上可以看出,该体系在348 K时Na2B4O7.5H2O的结晶区最大,NaBr的结晶区最小。  相似文献   

14.
Na_2B_4O_7-Na_2SO_4-NaCl-H_2O四元体系323K相平衡研究   总被引:1,自引:2,他引:1  
采用等温溶解平衡法研究了四元体系Na2B4O7-Na2SO4-NaC l-H2O在323 K的相平衡及平衡液相,测定了平衡液相的溶解度及密度。研究发现,该体系属于简单共饱和体系,无复盐和固溶体生成。根据实验数据绘制了相应的相图,相图中有一个共饱点E,3条单变曲线E1E,E2E和E3E;3个结晶区平衡固相分别为:NaC l,Na2B4O7.10H2O和Na2SO4。实验结果表明,NaC l对Na2B4O7.10H2O和Na2SO4有盐析作用,并简要讨论了密度变化规律。  相似文献   

15.
为了对苦卤结晶析出的Na(Cl,Br)固溶体中氯化钠组分和溴化钠组分进行分离,测定了NaCl–NaBr–CH3OH三元体系在273及323 K温度时的溶解度数据,根据测得的液相点和湿渣相点确定了对应的固相点,由此绘制出了两个温度下的相图。结果显示,273及323 K温度下该三元体系的相图特征相似,均只有一个共饱点、两条饱和溶解度曲线,对应的固相结晶区有三个:NaCl纯盐结晶区、NaCl和Na(Cl,Br)固溶体共结晶区、Na(Cl,Br)固溶体结晶区。NaBr在无水甲醇中溶解度的增大导致NaCl溶解度大幅减小,说明NaBr对NaCl产生了较强的盐析效应,273 K时两种溶质在甲醇中的溶解度均比323 K时的溶解度大。依据273和323 K的NaCl–NaBr–CH3OH体系相图及298 K的NaCl–NaBr–H2O体系相图设计了分离Na(Cl,Br)固溶体中氯化钠和溴化钠的工艺。  相似文献   

16.
采用等温溶解平衡法研究了三元体系MgCl2+NH4Cl+H2O 298.15 K的稳定相平衡,测定了平衡时各组分的溶解度及平衡液相的密度、折光率等物化性质。该三元体系在298.15 K时的稳定相图含有2个共饱点E1,E2,3条单变量曲线AE1,E1E2,E2B,3个结晶区。3个结晶区分别对应MgCl2.6H2O,NH4Cl及复盐铵光卤石(NH4Cl.MgCl2.6H2O)。2个共饱点中,E1为不相称共饱点,对应的平衡固相为NH4Cl.MgCl2.6H2O+NH4Cl,平衡液相组成为w(NH4Cl)=7.79%,w(MgCl2)=21.90%;E2为相称共饱点,对应的平衡固相为NH4Cl.MgCl2.6H2O+MgCl2.6H2O,平衡液相组成为w(NH4Cl)=0.21%,w(MgCl2)=32.27%。研究结果表明:该三元体系为复杂三元体系,有不相称复盐NH4Cl.MgCl2.6H2O生成。MgCl2对NH4Cl有强烈的盐析作用。平衡液相的密度和折光率随着溶液中MgCl2质量分数的增加而增大。采用经验公式对密度和折光率进行计算,计算值与实验值吻合度较好,相对偏差小于0.012。  相似文献   

17.
采用等温溶解平衡法测定N,N′-二(2-羟丙基)哌嗪(HPP)?Na2SO4?H2O三元体系在273.15和298.15 K下的相平衡数据,采用湿渣法测定其平衡固相数据,绘制等温相图。用改进的单组分电解质Pitzer方程计算该体系中Na2SO4和Na2SO4?10H2O的溶解平衡常数,并对相平衡数据进行理论计算。结果表明,273.15 K时存在3个结晶区,298.15 K时存在4个结晶区。HPP的存在降低了Na2SO4和Na2SO4?10H2O的相转变温度,使298.15 K下的相图中存在Na2SO4的结晶区域,且273.15和298.15 K的相图中不存在纯HPP的结晶区域。理论计算与实验数据的均方根偏差不高于0.0290,表明相平衡数据计算值与实验值较吻合,证实了改进的单组分电解质Pitzer方程适用于该体系计算。  相似文献   

18.
The pseudo-ternary system (NaCl + Na2SO4 + H2O) of coal gasification wastewater was studied at T =(268.15to 373.15) K.The solubility and density of the equilibrium liquid phase were determined by the isothermal solution saturation method.The equilibrium solids were also investigated by the Schreinemaker's method of wet residues and X-ray powder diffraction (XRD).According to the experimental data,the phase diagrams were determined.It was found that there was no significant solubility difference on the NaCl-rich side between the ternary system (NaCl + Na2SO4 + H2O) in coal gasification wastewater and in pure water.However,the solubility on the Na2SO4-rich side of coal gasification wastewater was apparently higher than that of pure water.The increase in the solubility of Na2SO4 was most likely caused by the effects of other impurities apart from NaCl and Na2SO4 in coal gasification wastewater.The measured data and phase equilibrium diagrams can provide fundamental basis for salt recovery in coal gasification wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号