首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
以Al2O3和SiC为原料,利用热压烧结法制备了Al2O3-SiC复合陶瓷.采用三点弯曲法、单边切口梁法等手段和SEM方法分别测定和分析了该复合陶瓷的抗弯强度、断裂韧性、致密度和断口形貌.结果表明,Al2O3-SiC10wt%复合陶瓷的致密度随热压烧结温度的提高而逐渐提高,最高可达98.42%;抗弯强度随烧结温度的升高而呈上升趋势,在1 800℃时抗弯强度最大为623MPa;断裂韧性明显是随温度的升高加强,特别是在1 850℃烧结时达到最高值7.9MPa·m1/2.材料的断裂方式主要为沿晶断裂,随着烧结温度升高,穿晶断裂所占的比例增大.  相似文献   

2.
利用氢电弧等离子体法制备了纳米Ni3Al金属间化合物,并以此为弥散相,以氧化铝为基体,采用热压烧结工艺在1 450℃下制得纳米Ni3Al/Al2O3复合陶瓷,并研究其力学性能和微观结构。结果表明:加入纳米Ni3Al的复合陶瓷断裂韧性比纯氧化铝陶瓷有了明显提高,当加入质量分数5%纳米Ni3Al时,断裂韧性最高达12.1 MPa.m1/2。利用扫描电子显微镜观察试样的断口形貌,分析陶瓷的微观结构发现:随着纳米Ni3Al含量的增加,片状晶数量逐渐降低,说明纳米Ni3Al质量分数的加入抑制了片晶的生长。  相似文献   

3.
应用微波加热技术进行高纯Al2O3陶瓷烧结是一种理想的选择.本文使用一种新型的圆柱形微波多模烧结腔体进行了Al2O3陶瓷的烧结研究,该设备可在短时间内达到较高的烧结温度,并能实现坯体的整体烧结.分别对纯Al2O3粉体和Al2O3/MgO混合粉体进行了烧结实验,结果表明,添加MgO作为助烧剂烧结得到的陶瓷试样的相对密度高于纯Al2O3粉体烧结得到的陶瓷试样,在1 700℃下保温40 min,其相对密度可以达到理论密度的97.8%,维氏硬度达22.3 HV/GPa.从SEM图中可观察到试样微观结构良好,晶粒大小均匀,致密化程度高.  相似文献   

4.
利用热压烧结法制备了Al2O3-TiC复合陶瓷材料,研究了TiC含量、烧结温度对材料致密度、抗弯强度、断裂韧性等性能的影响.结果表明:TiC颗粒的引入,可以有效提高Al2O3-TiC复合陶瓷材料的力学性能,当TiC含量为30Vol%、烧结温度为1 750℃时,Al2O3-TiC复合材料的断裂韧性值和抗弯强度值达到最大,分别为5.08 MPa·m1/2和620 MPa,试样的断裂方式主要为沿晶断裂,同时也含有穿晶断裂.  相似文献   

5.
应用微波加热技术进行高纯Al2O3陶瓷烧结是一种理想的选择.本文使用一种新型的圆柱形微波多模烧结腔体进行了Al2O3陶瓷的烧结研究,该设备可在短时间内达到较高的烧结温度,并能实现坯体的整体烧结.分别对纯Al2O3粉体和Al2O3/MgO混合粉体进行了烧结实验,结果表明,添加MgO作为助烧剂烧结得到的陶瓷试样的相对密度高于纯Al2O3粉体烧结得到的陶瓷试样,在1 700℃下保温40 min,其相对密度可以达到理论密度的97.8%,维氏硬度达22.3 HV/GPa.从SEM图中可观察到试样微观结构良好,晶粒大小均匀,致密化程度高.  相似文献   

6.
采用不同粒径的ZrO2粉料增强增韧Al2O3-SiC纳米复合陶瓷,利用无压烧结制备出了致密的Al2O3-ZrO2(3Y)-SiC纳米复合陶瓷.对不同粒径的ZrO2粉料在Al2O3-SiC纳米复合陶瓷中所起的作用进行了研究,结论为ZrO2粉料的粒径是影响烧结温度的重要因素,添加纳米级的ZrO2可以降低烧结温度100 ℃以上.断裂表面的SEM图像表明:穿晶断裂是Al2O3-ZrO2-SiC纳米复合陶瓷的主要断裂模式,这是所制备纳米复相陶瓷抗热震性大幅提高的主要原因.  相似文献   

7.
以α-Al2O3粉、TiC粉为原料,采用热压烧结工艺制备了Al2O3-TiC复合材料,系统研究了烧结温度以及成分对Al2O3-TiC复合材料的组织结构和力学性能的影响规律.结果表明:α-Al2O3与TiC间没有发生化学反应,两相间具有很好的化学相容性.TiC的引入有利于提高Al2O3-TiC复合材料的力学性能.1 600℃热压烧结的Al2O3-20%TiC复合材料具有最佳的力学性能,其抗弯强度和断裂韧性分别达到509.45 MPa和5.27 MPa·m1/2,复合材料的断裂方式主要是沿晶断裂,同时伴有穿晶断裂.  相似文献   

8.
氧化铝陶瓷蓄热体的烧结性及抗热震性能研究   总被引:2,自引:0,他引:2  
在Al2O3中加入一定量的苏州土和MgO,使Al2O3陶瓷在1450~1550℃的温度范围内烧结。利用XRD、SEM等手段进行测试,结果表明在烧成过程中苏州土、MgO与Al2O3反应生成低共熔相和一定量的尖晶石小晶粒,填充在Al2O3晶粒之间,有效地降低Al2O3陶瓷的烧结温度;控制苏州土和MgO的外加量,能够调节Al2O3晶界上形成的尖晶石量和液相量,可有效抑制Al2O3晶粒的长大,使Al2O3陶瓷晶粒细小且分布均匀,有利于陶瓷显微结构的改善。Al2O3晶粒的均匀化、细晶化,能够显著提高Al2O3陶瓷的强度,降低其热膨胀系数,从而提高Al2O3陶瓷的热稳定性。  相似文献   

9.
纳米SiC粉中的氧含量对Al_2O_3陶瓷无压烧结的影响   总被引:1,自引:0,他引:1  
讨论了纳米 SiC中的氧含量对 Al2O3/ SiC纳米复相陶瓷性能的影响 .发 现当氧含量偏高时,烧结体难以致密化,同时在组织中出现大尺寸气孔 .实验证明,氧含量 较低的纳米β SiC可以使烧结体密度和强度得到极大提高;而氧含量偏高的 Si/C/N非晶 复合粉,提高性能的作用甚微 .其根本原因就是,粉体中的氧与硅形成蒸气,从而使烧结体 中出现气孔 .  相似文献   

10.
为研究微波烧结均匀场条件(MSHF条件),提出介电常数随温度变化时微波烧结温度场的分区均匀填充轴对称摄动模型,讨论了影响Al2O3陶瓷的MSHF条件的因素。  相似文献   

11.
氧化铝(Al_2O_3)陶瓷烧结温度较高,通过添加烧结助剂可以实现Al_2O_3陶瓷的低温烧结。对比分析了不同含量的CuO-TiO_2和MnO_2-TiO_2-MgO复合烧结助剂在不同的烧结温度下对Al_2O_3烧结性能的影响,得到了烧结助剂含量和烧结温度对Al_2O_3陶瓷体积收缩率、体积密度以及内部显微结构的影响规律。实验分析表明,在1 350℃的烧结温度下,添加4%(质量分数) CuO-TiO_2和MnO_2-TiO_2-MgO的烧结助剂,Al_2O_3陶瓷分别能获得高达3. 67 g/mm~3和3. 76 g/mm~3的体积密度,并且在扫描电子显微镜下观察到良好的显微结构。  相似文献   

12.
烧结温度对BN陶瓷材料强度的影响   总被引:2,自引:0,他引:2  
采用热压烧结(HP)法制备纯BN陶瓷和B2O3-BN陶瓷复合材料.利用三点弯曲方法测定了这两种材料的抗弯强度、弹性模量等力学性能,通过扫描电镜对两种材料的断口进行了分析。结果表明:纯BN陶瓷烧结温度达到1800℃时相对质量密度和强度较低;添加B2O3烧结温度超过900℃时可以形成液相,改善了BN的烧结性能,提高了B2O3-BN复合陶瓷的相对质量密度,从而提高了材料的强度。  相似文献   

13.
氧化钙对烧结法建筑装饰微晶玻璃烧结过程的影响   总被引:1,自引:0,他引:1  
利用玻璃的烧结收缩曲线及X射线衍射分析,研究了CaO-Al2O3-SiO2系统建筑装饰微晶玻璃的烧结动力学,并讨论了CaO含量变化对玻璃烧结的影响,结合工业化生产,确定出有利于烧结过程的最佳CaO含量范围。  相似文献   

14.
掺杂纳米Al2O3的石墨/Cu基复合材料性能研究   总被引:1,自引:0,他引:1  
利用均相沉淀法制备了含石墨粉的纳米Al2O3,采用模压成型法制备了含有纳米Al2O3的铜质石墨复合材料,并研究了此复合材料的性能与纳米Al2O3质量分数的关系.根据实验结果分析了实验现象的原因,并由此得出:当纳米Al2O3的质量分数为4%时,其铜质石墨复合材料性能最佳。  相似文献   

15.
选取纳米Al2O3与聚合氯化铝的质量百分组成、水浴温度、混合搅拌时间作为影响复配絮凝剂对COD去除效果的3个主要因子进行正交试验。正交优化试验结果表明最佳的复配条件为:将聚合氯化铝固体粉末与纳米Al2O3粉末(两者质量组成为85%+15%)用粉碎机充分混合后配置成质量浓度1%的液体复合絮凝剂,再将该液体复合絮凝剂在65℃的恒温水浴条件下,用电子恒速搅拌器以100 r/min的转速搅拌40 min。  相似文献   

16.
以3Ti/Si/2C粉体为原料,通过自蔓延高温合成技术合成了Ti3SiC2材料。研究了Al2O3助剂对自蔓延高温合成Ti3SiC2的影响。研究结果表明,3Ti/Si/2C粉体会发生自蔓延反应,产物的组成相为TiC、Ti3SiC2和Ti5Si3,产物中Ti3SiC2含量约为23%。添加适量的细粒度Al2O3可显著促进反应合成Ti3SiC2,3Ti/Si/2C/0.1Al2O3原料反应后得到的产物中Ti3SiC2含量达64%。  相似文献   

17.
氧化铝对微晶玻璃装饰板烧结及晶化影响   总被引:6,自引:0,他引:6  
研究了Al2O3含量的变化对CaO-Al2O3-SiO2系统微晶玻璃的烧结和析晶的影响规律。结合工业化生产,确定了合适的Al2O3含量范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号