首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed that magnetic properties (Giant magneto.-impedance effect and domain wall dynamic) of glass-coated microwires are closely related with the peculiarities of the fabrication technique involving rapid solidification of metallic alloy surrounded by glass coating from the melt.We present studies of the interfacial layer between the metallic nucleus and glass coating and studies of the inhomogeneities related with fabrication process of thin ferromagnetic microwires.We observed gas bubbles within the glass coating with volume content of about 8–12%. The sizes of the bubbles were between 1 and 15 μm. The existence of such bubbles might be the origin of the inhomogeneities in the internal stresses distribution.Using scanning electron microscope JEOL JSM-6610 we obtained the image of the interfacial layer and the elements distribution within the glass coating and metallic nucleus. This allowed us to estimate the thickness of the interfacial layer.Understanding of the origins of the interfacial layer and defects may help for improvement of the existing technology for thin composite wires fabrication and enhance their magnetic properties.  相似文献   

2.
We studied giant magnetoimpedance (GMI) effect and magnetic properties of Fe70.8Cu1Nb3.1Si14.5B10.6 and Fe71.8Cu1Nb3.1Si15B9.1 Finemet microwires. We observed that GMI effect and magnetic softness of glass-coated microwires produced by the Taylor–Ulitovski technique can be tailored either controlling magnetoelastic anisotropy of as-cast FeCuNbSiB microwires, and/or controlling their structure by heat treatment or by changing the fabrication conditions. High GMI effect has been observed in as-prepared Fe-rich and heat treated microwires with nanocrystalline structure.  相似文献   

3.
A thick SiC coating was prepared on graphite by chemical vapor reaction. The coating reveals a typical crystalline structure with limited porosity and combines well with the substrate. Oxidation tests demonstrate that the coating has a weak self-healing ability at 1100 K and good self-healing ability at temperatures from 1623 to 1823 K. An oxyacetylene torch test verifies that the prepared coating can effectively protect graphite from ablation for 50 s. After the ablation test, the silica microspheres and other interesting silica structures such as microwires, microparticles, microflowers, nanowires and nanoparticles are formed at the ablation center and its surroundings.  相似文献   

4.
采用泰勒法制备了直径范围在30~100μm之间的玻璃包裹Ni-Mn-In-Co合金纤维。利用综合物性测量系统(PPMS)研究了磁场对制备态和退火态纤维马氏体相变温度的影响,并且从M-B曲线中分别计算得出了制备态和退火态纤维的磁热效应。研究结果表明:制备态纤维在室温下为7M马氏体结构。在制备态和退火态纤维中,奥氏体相变开始温度随外加磁场变化速率(ΔAs/ΔB)分别为-1.6和-4 K/T。退火态纤维在As点附近发生磁场诱发马氏体向奥氏体逆相变。退火态纤维最大磁熵变为3.0 J/(kg·K),远大于制备态纤维的0.5 J/(kg·K)。Ni-Mn-In-Co合金纤维的大磁熵变和低成本使其成为最具潜力的磁制冷材料之一。  相似文献   

5.
The low-Al part of the ternary Ru–Fe–Al phase diagram at 1473 K is established in this work. Due to the very promising properties of B2 ruthenium aluminide, the investigation of the B2 region of this system is of special interest. The experimental work includes diffusion methods, as well as quenching of annealed single-phase and two-phase alloys. The results of the different methods are in good agreement. Optical and scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction are used to investigate the samples. It is shown in this work that a three-component B2 phase exists over a wide composition range.  相似文献   

6.
《Acta Materialia》2007,55(13):4271-4276
Novel two-magnetic-phase multilayer microwires with outstanding controllable behaviour are introduced. They are obtained by suitable combined processing techniques, such as the quenching and drawing method, sputtering and/or electroplating, and consist of a magnetic nucleus, intermediate non-magnetic layers and an outer magnetic layer. In this work, an ultrasoft CoFe-based amorphous nucleus and a magnetically harder crystalline CoNi outer layer are considered. The magnetostatic interaction between magnetic phases is proven to give rise to antiferromagnetic-like coupling, resulting in biasing of the magnetic behaviour of the soft nucleus. In addition, the effective magnetic anisotropy of the latter is tailored by the magnetoelastic coupling between the nucleus and the external layers through the stresses induced during the fabrication process and by their differential thermal expansion coefficients. This new family of microwires shows excellent magnetic properties which, being tailorable, make them ideal materials for novel or optimized elements in sensor devices.  相似文献   

7.
This investigation studied the crystallization of a chemical conversion layer that formed on AZ91D Mg alloy in carbonic acid. The layer was an amorphous precursor to a crystalline Mg–Al layered double hydrotalcite, which improved the corrosion resistance of the alloy. The precursor must be treated with a strongly alkaline solution, causing the leaching out of amphoteric Al3+. The leaching step evidently caused crystallization from an amorphous precursor layer to a crystalline coating. Nuclear magnetic resonance analysis indicated that Al3+, which was originally randomly coordinated with surrounding OH in the precursor, coordinated octahedrally with OH groups in the crystalline conversion coating.  相似文献   

8.
Most previous researches focused on small casting ingots prepared by arc melting, when studying high-entropy alloys. Large sized ingots were also necessary in exploring the existence of volume effects in the multi-principal element alloys. During the experiments, a large sized CoCrFeNiTi0.5 alloy casting ingot was prepared by a medium frequency induction melting furnace. A slight volume effect occurred, reflecting mainly in the growth of crystalline grains and the increase of alloy hardness in the ingot. To investigate the effect of annealing temperature on microstructure and properties of CoCrFeNiTi0.5 alloy, several samples taken from the ingot were annealed at 600 °C, 700 °C, 800 °C and 1000 °C respectively for 6 h. Almost no effects were found to the crystalline structure and elemental distribution when the samples were annealed below 1000 °C. The crystalline structure of CoCrFeNiTi0.5 alloy was composed of one principal face-centered cubic (FCC) solid-solution matrix and a few intermetallic phases in the form of interdentrite. Dendrite contained approximately equivalent amount of Co, Cr, Fe, Ni and a smaller amount of Ti. When annealed below 1000 °C, the interdendrite stayed in (Ni, Ti)-rich phase, (Fe, Cr)-rich phase and (Co, Ti)-rich phase. After 1000 °C annealing, (Co, Ti)-rich phase disappeared, while (Ni, Ti)-rich phase and (Fe, Cr)-rich phase grew. The microhardness of the as-cast CoCrFeNiTi0.5 alloy was 616.80 HV and the macrohardness was 52 HRC. The hardness of the samples stayed generally unchanged after annealing. This indicated a high microstructure stability and excellent resistance to temper softening that the CoCrFeNiTi0.5 alloy exhibited.  相似文献   

9.
We studied the magnetostriction of Nd6Fe13−xCoxSi (x = 0, 1) intermetallic compounds with tetragonal Nd6Fe13Si-type structure, using the strain gauge method in the temperature range of 77–600 K under applied magnetic fields up to 1.5 T. The anisotropic magnetostriction (Δλ) versus temperature of the studied samples has shown almost similar field-dependence behavior. Below the spin reorientation temperature (TSR), Δλ changes its sign from positive to negative value at an applied threshold field which increases with decreasing temperature. This behavior may originate from the reduction of the magnetocrystalline anisotropy with temperature. It is also observed that absolute value of Δλ increases by Co substitution. On the other hand, the volume magnetostriction (ΔV/V) versus field shows different behavior. The ΔV/V curves of Nd6Fe12CoSi tend to have a nearly quadratic dependence on applied field near magnetic ordering temperature as expected for the parastrictive behavior. The temperature dependence of magnetostriction values is discussed based on the magnetostriction relation of the tetragonal structure to determine the signs of some of magnetostriction constants for these polycrystalline compounds.  相似文献   

10.
In this paper we present a transmission electron microscopic study on the effect of annealing on the microstructure of a cold-rolled Ni50.2Ti49.8 ribbon. Transmission electron microscopy of the as-received sample shows the presence of alternating amorphous and crystalline bands. The crystalline bands have widths of the order of a few microns and contain amorphous nanopockets and B2 nanograins, the latter at around 20 nm diameter and preferentially oriented with their normal along the 111 direction and perpendicular to the strip surface. As-received samples were annealed for 30 min at different temperatures up to 800 °C. Crystallization starts in the amorphous bands at around 350 °C and finally ends up with the coarsening of the grains in the entire sample. Annealing of the samples at 450 °C entirely transforms the amorphous bands into crystalline bands. At 800 °C the grain size increases to 30–50 μm with a formation of a tweed kind of morphology inside the grains when observed at room temperature. Diffraction patterns from such grains reveal the presence of diffuse intensity around 1/3110* indicating the formation of the R-phase. NiTi2 precipitates form at 450 °C while annealing at 600 °C and higher yields Ni3Ti2 precipitates. For samples annealed at 500 °C for a longer time, Ni4Ti3 precipitates have been observed along with the austenite to martensite transformation in the grains.  相似文献   

11.
The results of magnetic studies and Mössbauer spectroscopic investigations are reported for the stannides TbRhSn and DyRhSn crystallizing in the hexagonal ZrNiAl-type structure. The polycrystalline samples of these ternary intermetallics were synthesized by arc melting from metallic precursors. Detailed 119Sn Mössbauer spectroscopic studies are used to investigate the hyperfine interactions and their temperature evolutions at places occupied by the diamagnetic tin nuclei. Magnetic properties of DyRhSn and TbRhSn were studied by AC/DC magnetometry in a wide temperature range. The results show that both compounds are magnetically ordered at low temperatures. DyRhSn is a non-collinear antiferromagnet with the Néel temperature TN = 7.5 K, whereas TbRhSn undergoes a transition from a paramagnetic to an antiferromagnetic state at TN = 20.2 K. An additional transition at TSR = 10.3 K is detected for TbRhSn which corresponds to some changes in the magnetic moments ordering. The role of the magnetostriction effect in the evolution of the hyperfine parameters and its influence on the observed TbRhSn Mössbauer spectra is discussed. Triangular-like antiferromagnetic arrangements with rare-earth magnetic moments lying in the hexagonal plane are proposed for both compounds at very low temperatures.  相似文献   

12.
We examined how electronic properties of the intermediate-valent CeRhIn are influenced by gradual substitution of rhodium with germanium. Results of specific-heat, magnetic susceptibility, electrical resistivity, thermopower and X-ray photoelectron spectroscopy (XPS) measurements performed in wide range of temperature and magnetic field on polycrystalline samples of CeRh1−xGexIn, for x = 0.1, 0.2 and 0.3, are presented and compared to corresponding data reported earlier for CeRhIn, its hydrides and CePdxRh1−x In solutions. A systematic shift from the intermediate-valence to a localized 4f-state with increasing content of germanium is evident from all obtained results. Non-Fermi liquid state is formed at low temperatures for the solution with the lowest Ge content, but it is destroyed by magnetic field and/or further doping with Ge.  相似文献   

13.
The formation of electroless Ni–B coatings obtained using a low temperature bath and evaluation of their characteristic properties are addressed in this paper. An alkaline bath having nickel chloride as the source of nickel and borohydride as the reducing agent was used to prepare the electroless Ni–B coatings. The influence of concentration of sodium borohydride in bath on the plating rate and the nickel/boron content of the resultant Ni–B coatings was studied. Selected coatings were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively, for assessing the phase content, phase transformation behaviour and magnetic properties. XRD patterns reveal that the structure of electroless Ni–B coatings in as-plated condition is a function of the boron content of the coating: higher the boron content, greater the amorphous nature of the coating and vice-versa. DSC traces exhibit two exothermic peaks around 300 and 420 °C, corresponding to the phase transformation of crystalline nickel and Ni3B phases at 300 °C and the transformation of a higher phase compound to Ni3B at 420 °C. VSM studies indicate that the magnetic properties of the coating is also a function of the boron content of the coating: higher the boron content, lesser the saturation magnetization.  相似文献   

14.
The magnetic properties of CeCo7Mn5 and CeCo8Mn4 compounds have been investigated by combining X-ray photoelectron spectroscopy (XPS) and magnetic measurements in a wide temperature range (4–550) K and magnetic field up to 12 T. X-ray powder diffraction (XRD) measurements showed that CeCo7Mn5 and CeCo8Mn4 compounds are isostructural and crystallize in the ThMn12 structure type. XPS spectra pointed out the intermediate valence state of Ce atoms and that both Co and Mn atoms carry magnetic moments. The complex magnetic structure of CeCo7Mn5 and CeCo8Mn4 is determined by the competition between the ferromagnetic (Co–Co pairs) and antiferromagnetic (Co–Mn and Mn–Mn pairs) interactions. Two different ordering temperatures TN and TC correlated to antiferromagnetic and ferromagnetic coupling of 3d magnetic moments, respectively, are evidenced. Magnetic moments of about 1.6 μB/Co and 3.2 μB/Mn atoms were determined by correlating the magnetic data of the two compounds, in good agreement with the exchange splitting of XPS Co 3s and Mn 3s core levels.  相似文献   

15.
By the first-principles calculations, we present the results of electronic structure and magnetic properties on bulk CrGa2Sb2 and MnGa2Sb2 in an orthorhombic structure with the linear chains of transition-metal Cr and Mn atoms, using four different exchange correlation potentials: the local density approximation (LDA), the generalized gradient approximation (GGA), GGA + U, and the Tran-Blaha modified Becke-Johnson functional (mBJ). The electronic structure calculations from four exchange correlation potentials show that CrGa2Sb2 is a pseudogap (negative gap) material with very small density of states (DOS) at the Fermi level, while MnGa2Sb2 has notably higher DOS at the Fermi level compared to CrGa2Sb2, exhibiting stronger metallic conductivity, although the mBJ potential obtains lower DOS at the Fermi level than LDA and GGA for both CrGa2Sb2 and MnGa2Sb2. The GGA + U method with a small value (1 eV) of the on-site Coulomb interaction parameter U obtains lower DOS at the Fermi level compared to the large value of U. In agreement with the measurement data, the total energy calculations reveal that both CrGa2Sb2 and MnGa2Sb2 have a stable ferromagnetic ground state with lower energies relative to antiferromagnetic state. Based on the Heisenberg model, the magnetic exchange constants between the nearest-neighbor Cr–Cr and Mn–Mn along transition-metal linear chains are calculated to be 48.6 meV and 27.5 meV for CrGa2Sb2 and MnGa2Sb2, respectively. By the mean-field approximation method, we calculated the Curie temperature of two compounds to be above room-temperature.  相似文献   

16.
Measurements of electronic structure, microstructure and thermoelectric properties of zinc antimonide thin films prepared by direct current magnetron co-sputtering were carried out. The as-deposited zinc antimonide thin film had a very high resistivity similar to insulating ceramics, which was due to a low binding energy of both zinc and antimony, with the electron scattering increases and impedes the current transport. With the increase in annealing temperature, the films became more crystalline and the thermoelectric properties were also improved. The resistivity of the film decreased rapidly with its crystallinity when the annealing temperature was above 350 °C. The Seebeck coefficients of the thin films were positive, indicating that the films were P-type. The Seebeck coefficient of those samples increased with increasing annealing temperature. The thin film annealed at 400 °C has an optimal power factor of 1.87 × 10−3 Wm−1 K−2 with a Seebeck coefficient of 300 μVK−1 and a resistivity of 4.82 × 10−5 Ωm at 573 K.  相似文献   

17.
本文研究了热处理对FeCuNbSiB薄膜结构及磁性能的影响。XRD分析表明制备态的FeCuNbSiB为非晶态,并且在300℃热处理仍然保持非晶态。300℃热处理后,薄膜释放应力,软磁性能有所提高。热处理温度进一步升高,薄膜由非晶态转化为纳米晶,矫顽力及饱和磁化场明显增加,磁矩向垂直膜面方向转动,软磁性能下降。  相似文献   

18.
《Intermetallics》2004,12(12):i76-1386
Single crystals of UNi1−xSb2 have been grown from an Sb-rich melt and studied by means of X-ray diffraction, magnetic and electrical transport measurements. Crystal structure refinements indicated significant deficiency on the transition metal sites in the tetragonal HfCuSi2-type unit cell, yielding the actual composition UNi0.5Sb2. The single crystals studied order antiferromagnetically below TN=161 K and exhibit another phase transition at Tt=60 K, presumably caused by a spin-reorientation. No crystal structure distortion could be detected at 10 K. Above TN the electrical resistivity is dominated by a Kondo effect, whereas at lower temperatures it shows a behavior characteristic of antiferromagnets. The overall magnetic and electrical transport properties of UNi0.5Sb2 are highly anisotropic both in the ordered and paramagnetic states.  相似文献   

19.
Y. Zuo  R. Pang  W. Li  J.P. Xiong  Y.M. Tang 《Corrosion Science》2008,50(12):3322-3328
Electrochemical impedance spectra (EIS) of six coating systems in 3.5% NaCl solution were measured and the relations between coating resistances and phase angles at different frequencies were analyzed. The results indicated that in middle frequency range, the phase angle and the coating resistance show similar decreasing tendencies. For the coating systems studied, the variation of phase angles at 10 Hz with immersion time was very close to the variation of coating resistance, hence may qualitatively reflect the coating performance. For the studied coating systems, the phase angle at 10 Hz decreased continuously from the beginning, indicating the permeation of the coating system by the electrolytes. When the phase angle reached a relatively stable stage, for different coating systems which was below 40°–20°, meaning the coating has been permeated through and electrochemical reactions under the coatings occurred. In addition, the phase angle at 15 kHz may reflect the state of coating in later stage. These phase angle parameters may be used as quick measurements to evaluate coating performance.  相似文献   

20.
NiCoCrAlYSiB coatings were deposited by arc ion plating (AIP) and annealed/pre-oxidised under various conditions. The corrosion behaviour of as-deposited and annealed/pre-oxidised coatings was studied by salt spray testing in a neutral mist of 5 wt% NaCl at 35 °C for 200 h. The results showed that the as-deposited NiCoCrAlYSiB coating behaved poorly while the annealed and pre-oxidised ones performed much better in salt spray tests. The dense microstructure in annealed coatings and formation of α-Al2O3 scales on the surface during pre-oxidation improved the corrosion resistance in salt spray test. The corrosion process was investigated from the aspects of corrosion products, and its electrochemical mechanism was proposed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号