首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对某可调向心涡轮增压器,基于蜗壳流动周向非均匀性的分布规律,提出采用改进喷嘴座连接臂结构和非均匀布置可调导叶的设计方案,以降低涡轮级各部分的流动损失,提高涡轮效率.结果表明:改型后涡轮工作在发动机标定功率工况对应相似转速条件下效率相对提高值最大为5.18%,,发动机最大转矩工况对应相似转速条件下效率相对提高值最大为3.57%,;改型后蜗壳出口气流角变得更加均匀,蜗壳出口气流角与导叶开度角相接近,减小了喷嘴环区域的流动损失,解释了改型前、后涡轮效率提高的原因;改型后各叶轮流道流量的周向非均匀性明显降低,各叶轮叶片负荷周向分布更加均匀.证明改型方案对提高涡轮效率,降低叶片振动,延长涡轮有效使用寿命具有积极的影响.  相似文献   

2.
杜长河  李亮  丰镇平 《动力工程学报》2015,35(2):113-118,133
为评估透平叶片的蒸汽冷却效果,以Mark II叶片为对象,采用热流固耦合的数值计算方法,通过与实验数据进行比较考察了不同湍流模型对计算结果的影响,对比分析了空气、过热蒸汽和湿蒸汽冷却效果的差异,研究了冷却蒸汽质量流量、进口湍动度和叶片表面粗糙度对蒸汽冷却效率的影响.结果表明:SST转捩湍流模型对于流动换热计算有较高的精度;与空气冷却相比,过热蒸汽冷却的效率更高,叶片壁面温度更低;与过热蒸汽冷却相比,湿蒸汽的冷却效率更高,叶片壁面温度更低,且随着蒸汽湿度的增加,冷却效率提高,叶片壁面温度降低;增加冷却蒸汽的质量流量可使冷却效率提高,但冷却蒸汽的温升减小;当湍流强度小于3%时,冷却效率随冷却蒸汽进口湍流强度的增大而提高;增加叶片粗糙度使得叶片冷却效率显著提高.  相似文献   

3.
将结构静强度可靠性、疲劳可靠性以及刚度可靠性作为基本约束条件,对某涡轮静、动叶片进行了三维气动设计优化。建立了涡轮叶片结构可靠性气动设计优化模型,给出了叶片热-流-固耦合分析流程及气动设计优化代价函数。结果表明:优化后,静、动叶片的气动效率均值分别提高了2.45%和6.17%,且气动效率的标准方差也有一定减小;优化后,动叶片的各项结构可靠度指标得到提高,且达到设计要求;动叶片的结构系统可靠度从91.3%提高到了99.87%。  相似文献   

4.
某运行高炉煤气余压回收透平发电装置(Blast Furnace Gas Top Pressure Recovery Turbine Unit, TRT)的动叶片是直叶片,机组运行效率不高。在不改变机组进气条件的前提下,通过优化叶型降低流道中的损失,提高TRT涡轮的效率。在给定TRT涡轮通流尺寸的基础上优化动叶片的型线,对原始型线进行三维CFD计算,在原型线的基础上进行优化改进,并针对动叶片的叶身部分做了强度校核计算,优化后机组的总效率提高了1.7%,机组的输出功增加了4.2%。  相似文献   

5.
采用低稠度涡轮导向叶片设计方案,可减少导向叶片的用量,减轻涡轮重量,降低发动机冷气用量及耗油率,但同时也带来导向叶片端壁冷却负荷增大等问题。依据低稠度涡轮导向叶片端壁的结构与流动换热特点,制定了槽缝和气膜孔共同冷却的方案。通过数值模拟和分析,重点研究了低稠度涡轮导向叶片端壁前缘气膜孔在不同方向角、孔数、孔径以及叶栅通道中气膜孔布置等条件下的流动及冷却特性。研究结果表明:对低稠度涡轮导向叶片端壁前缘气膜孔进行优化设计,可以有效克服导向叶片端壁前缘高强度马蹄涡对于气膜冷却效果的不良影响;在叶栅通道内合理设置气膜孔,可以改善通道内复杂涡旋对端壁气膜的卷吸作用,提高气膜冷却效果;当槽缝和气膜孔中的冷气流量比分别为3%和2%、气膜孔方向角为45°、气膜孔直径为1.25 mm、叶片前缘和叶栅通道气膜孔数分别为8和1时,叶片端壁表面被冷气膜全部覆盖,此时端壁面平均气膜冷却效率相对最高,达到53.7%。  相似文献   

6.
涡轮叶尖间隙流动的数值模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
采用基于雷诺平均N-S方程的三维CFD计算程序,并结合Spalart-Allmaras-方程或κ-epsilon双方程湍流模型加壁面函数的方法,对涡轮平面叶栅和涡轮级转子的叶尖间隙流场进行了数值计算,详细研究了不同叶尖间隙高度、不同叶尖间隙形式和叶尖间隙有冷气入射时其对涡轮叶尖间隙流场和性能的影响.计算结果表明:叶尖间隙对从大约70%叶高到叶尖位置的叶片损失具有明显的影响;在同样间隙大小情况下,余高间隙叶片等熵效率比平间隙叶片等熵效率约提高了一个百分点;而叶尖间隙有冷气入射时涡轮的等熵效率要比无冷气入射时的等熵效率约提高两个百分点.  相似文献   

7.
为了提高跨音速气冷涡轮的效率,减小涡轮内的二次流损失,基于弯叶片设计方法,编制了弯叶片生成程序,同时借助优化设计方法,对某高压涡轮进行了气动优化设计。优化过程中,在导叶中应用弯叶片技术,同时优化动叶进出口气流角,以适应动静叶间匹配的变化。优化结果显示,在流量及功率变化不大的前提下,级效率较原型提高0.3%。效率提高的主要原因是优化后导叶中横向二次流损失减小。  相似文献   

8.
涡轮叶片三维气动分析方法研究   总被引:1,自引:0,他引:1  
精确的涡轮叶片气动性能计算是对其进行设计优化的重要基础。基于PRO/E软件建立了某涡轮流场叶片三维参数化实体模型,采用SST(shear stress transport)湍流模型对建立的涡轮流场叶片进行了三维气动分析,得到了流场及叶片表面的温度、压力、流速以及能量损失等气动参数分布,并对它们的变化规律进行了分析;基于叶片气动效率计算公式,给出了叶片平均气动效率的计算方法并分析了叶片气动效率沿叶高的变化规律,为涡轮叶片的气动设计优化奠定了较好的基础。  相似文献   

9.
为解决燃气轮机涡轮在端区二次流动造成的流动损失,对叶身/端壁融合(Blended Blade and End Wall,BBEW)技术在涡轮气动优化中的有效性进行研究,以E3模型高压涡轮第一级叶栅为研究对象,对涡轮叶片吸力面下端壁进行不同形式的叶身/端壁融合造型。设置入口总温为709 K,总压为344.74 kPa。通过数值模拟研究叶身/端壁融合技术在降低端壁气动损失及提高涡轮级效率和做功能力方面的贡献。研究结果表明:融合技术的应用能够有效减少端区局部流动损失,提升涡轮级做功能力,但同时会增加最大融合圆角半径位置处的流动损失;当静叶最大融合圆角相对半径和相对轴向弦长位置分别为0.16和0.47时,涡轮得到最佳的整体提升效果,此时等熵效率提高了0.010 %,比功率提升了0.141%。  相似文献   

10.
为提高某型燃气涡轮性能,利用改进遗传算法对该型涡轮进行了对转改造一维设计。设计过程中将涡轮效率作为优化目标,出口气动参数、叶片强度和效率等作为约束条件,将一维设计构建为有约束的非线性优化问题。在简单遗传算法基础上增加自适应机制、改进的交叉方式和惩罚函数处理约束条件等改进方式,选取涡轮的设计变量作为决策变量进行优化计算。优化后的结果显示涡轮的效率较原型涡轮提高了0.6%。  相似文献   

11.
This paper focuses on novel integration of high temperature solid oxide fuel cell coupled with recuperative gas turbine (with air-film cooling of blades) based hybrid power plant (SOFC-blade cooled GT). For realistic analysis of gas turbine cycle air-film blade cooling technique has been adopted. First law thermodynamic analysis investigating the combine effect of film cooling of blades, SOFC, applied to a recuperated gas turbine cycle has been reported. Thermodynamic modeling for the proposed cycle has been presented. Results highlight the influence of film cooling of blades and operating parameters of SOFC on various performance of SOFC-blade cooled GT based hybrid power plant. Moreover, parametric investigation has also been done to examine the effect of compressor pressure ratio, turbine inlet temperature, on hybrid plant efficiency and plant specific work. It has been found that on increasing turbine inlet temperature (TIT) beyond a certain limit, the efficiency of gas turbine starts declining after reaching an optimum value which is compensated by continuous increase in SOFC efficiency with increase in operating temperature. The net result is higher performance of hybrid cycle with increase in maximum cycle temperature. Furthermore, it has been observed that at TIT 1600 K and compression ratio 20, maximum efficiency of 73.46% can been achieved.  相似文献   

12.
Generally speaking,main flow path of gas turbine is assumed to be perfect for standard 3D computation.But in real engine,the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall.Besides,shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery,which not only causes a deterioration of useful work but also a penalty on turbine efficiency.It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured.Even so,the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance.In order to evaluate the impact of tip shroud geometry on turbine performance,a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper.The following geometry parameters were varied respectively:-Inlet cavity length and exit cavity length,-Shroud overhang upstream of the rotor leading edge and downstream of the trailing edge,-Shroud radial tip clearance,The aim of this paper is to isolate the influence of shroud and cavity geometry modifications on turbine aerodynamic performance and to obtain clear trends of efficiency changes caused by different tip shroud geometry.Moreover,interaction between leakage flow and mainstream for different shroud configuration is also highlighted in order to penetrate into the physical mechanisms producing them.Due to the limitations of the model selected in this paper,the aim of research is not to put forward the design rules of turbine shroud.However,the results obtained from this work will be useful to the integrated design and optimization of turbine with shrouded blades.  相似文献   

13.
Wells turbine is one of the technical systems allowing an efficient use of the power contained in oceans’ and seas’ waves with a relatively low investment level. It converts the pneumatic power of the air stream induced by an Oscillating Water Column into mechanical energy. The standard Wells turbines show several well-known disadvantages: low tangential force, leading to low power output from the turbine; high undesired axial force; usually a low aerodynamic efficiency and a limited range of operation due to stall. In the present work an optimization process is employed in order to increase the tangential force induced by a monoplane Wells turbine using symmetric airfoil blades. The automatic optimization procedure is carried out by coupling an in-house optimization library (OPAL (OPtimization ALgorithms)) with an industrial CFD (Computational Fluid Dynamics) code (ANSYS-Fluent). This multi-objective optimization relying on Evolutionary Algorithms takes into account both tangential force coefficient and turbine efficiency. Detailed comparisons are finally presented between the optimal design and the classical Wells turbine using symmetric airfoils, demonstrating the superiority of the proposed solution. The optimization of the airfoil shape leads to a considerably increased power output (average relative gain of +11.3%) and simultaneously to an increase of efficiency (+1%) throughout the full operating range.  相似文献   

14.
Wells turbines provide a practical solution for wave energy harvesting. The low aerodynamic efficiency of Wells turbines tangibly reduces their output power. Both the turbine efficiency and output power depend on the turbine solidity. The turbine solidity decreases from rotor hub to rotor tip for the commonly used rotors with constant chord‐length blades. The present work introduces a novel Wells turbine rotor geometry. This geometry was obtained by numerically optimizing the rotor's radial solidity distribution. The turbine performance with different rotor geometries was numerically simulated by solving the three‐dimensional Reynolds‐averaged Navier–Stocks equation under incompressible and steady state flow conditions. Simple and multi‐objective optimization were implemented in order to obtain the optimum rotor geometry. The present work showed that an improved turbine performance can be achieved by optimizing the turbine radial solidity distribution. Two different optimized rotor geometries were obtained and presented. The first rotor geometry improved the turbine efficiency by up to 4.7% by reducing its pressure drop. The second rotor geometries enhanced the turbine output power by up to 10.8%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this research, we developed software for designing the optimum shape of multi-MW wind turbine blades and analyzing the performance, and it features aerodynamic shape design, performance analysis, pitch–torque analysis and shape optimization for wind turbine blades. In order to verify the accuracy of the performance analysis results of the software developed in this research, we chose the 5 MW blade, designed by NREL, as the comparison model and compared with the analysis results of well known commercial software (GH-Bladed). The calculated performance analysis results of GH-Bladed and our software were consistent in all values of CP in all λ ranges. Also, to confirm applicability of the optimum design module, the optimum design of the new 5 MW blade was performed using the initial design data of the comparison model and found that solidity was smaller in our design even though it produced the same output and efficiency. Through optimization of blade design, efficiency increased by 1% while the thrust coefficient decreased by 7.5%.  相似文献   

16.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

17.
The development of 1700 °C class hydrogen fueled combustion turbine system with output of 500 MW and thermal efficiency of over 60% (HHV) has been conducted in the World Energy Network (WE‐NET) program. This paper describes the development of the first‐stage turbine cooled stator and rotor blades applied to the power generation system. The conceptual design of these cooling blades which were served in hot steam flow was carried out. The hybrid cooling method combining recovery cooling with partial ejection cooling was chosen from several cooling systems from a viewpoint of plant efficiency, operational reliability, and durability of cooled blades. Also, the single crystal superalloy (SC) as a blade substrate and thermal barrier coating (TBC) were applied. The experiments of the scale model turbine cooled blades were carried out using a hydrogen–oxygen combustion wind tunnel with practical steam conditions of 1700 °C and 2.5 MPa. The cooling effectiveness and metal temperature at rated condition and the soundness of TBC and blade substrate of the first stage stator and rotor test blades were clarified. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 237–252, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10088  相似文献   

18.
Oscillating water column based wave energy extracting system has a low efficiency due to the poor performance of its principal power extracting component, the bidirectional turbine. In the present work, flow over a bidirectional impulse turbine was simulated using CFD technique and optimized using multiple surrogates approach. The surrogates being problem dependent may produce unreliable results, if a wrong surrogate is selected. Hence, multiple surrogates such as response surface approximation, radial basis function, Kriging and weighted average surrogates were incorporated in this problem. Same design points were used to generate multiple optima via multiple surrogates to enhance the robustness of the optimization process. Numbers of guide vanes and rotor blades were chosen as the design variables, and the objective was to maximize the blade efficiency. Reynolds-averaged Navier–Stokes equations were solved for analyzing the flow physics. The computed results were used to train the surrogates and find the optimal points via hybrid genetic algorithm. The surrogates were further applied to find the optimal flow parameters by changing flow velocity and turbine speed. The relative efficiency enhancement through our present approach was about 16%. Detailed methodologies, analysis of the results and surrogate applicability have been presented in this paper.  相似文献   

19.
Hydraulic turbine is used for recovering power by using reverse running pump. In order to improve the efficiency of turbine working condition, the impeller with forward-curved blades was applied instead of the impeller with backward-curved blades. The effects on the performance of hydraulic turbine and inner flow character with different blade wrap angles were studied by the method of numerical simulation. The results show that: with the blade wrap angle growth, the maximum efficiency increases, but the range of the flow rate at the high efficiency decreases rapidly; the flow state of hydraulic turbine which in small flow area obtains a remarkable improvement; the flow within the impeller improves and the friction loss increases; the hydraulic loss in the small flow area inside the impeller declines but it grows in the large flow area.  相似文献   

20.
张明辉  张荻  谢永慧 《动力工程》2012,(7):501-507,516
在考虑高温热变形影响的前提下,对汽轮机调节级叶片枞树型叶根轮缘结构进行了优化研究.采用有限元分析软件Ansys的参数化设计语言APDL建立了枞树型叶根轮缘的参数化模型,以叶根轮缘的8个关键尺寸作为设计变量,以叶根轮缘处最大等效应力达到最小为目标函数,应用模式搜索算法进行优化控制,对叶根轮缘结构进行多变量的优化分析,获得了使叶根轮缘处最大等效应力大幅减小的枞树型叶根轮缘优化型线.结果表明:相对于原始结构,优化后,叶根和轮缘处的最大等效应力分别降低了19.84%和6.48%,提高了汽轮机运行的可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号