首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insertion of local through-thickness reinforcements into dry fiber preforms by stitching provides a possibility to improve the mechanical performance of polymer-matrix composites perpendicular to the laminate plane (out-of-plane). Three-dimensional stress states can be sustained by stitching yarns, leading to increased out-of-plane properties, such as impact resistance and damage tolerance. On the other hand, 3D reinforcements induce dislocations of the in-plane fibers causing fiber waviness and the formation of resin pockets in the stitch vicinity after resin infusion which may reduce the in-plane stiffness and strength properties of the laminate.In the present paper an experimental study on the influence of varying stitching parameters on in-plane and out-of-plane properties of non-crimp fabric (NCF) carbon fiber/epoxy laminates is presented, namely, shear modulus and strength as well as compression after impact (CAI) strength and mode I energy release rate. The direction of stitching, thread diameter, spacing and pitch length as well as the direction of loading (which is to be interpreted as the direction of the three rail shear loading or the direction of crack propagation in case of mode 1 energy release rate testing) were varied, and their effect on the mechanical properties was evaluated statistically.The stitching parameters were found to have ambivalent effect on the mechanical properties. Larger thread diameters and increased stitch densities result in enhanced CAI strengths and energy release rates but deteriorate the in-plane properties of the laminate. On the other hand, a good compromise between both effects can be found with a proper selection of the stitching configurations.  相似文献   

2.
Composites based on epoxy resin and differently aligned multi-walled carbon nanotube (MWCNT) sheets have been developed using hot-melt prepreg processing. Aligned MWCNT sheets were produced from MWCNT arrays using the drawing and winding technique. Wavy MWCNTs in the sheets have limited reinforcement efficiency in the composites. Therefore, mechanical stretching of the MWCNT sheets and their prepregs was conducted for this study. Mechanical stretching of the MWCNT sheets and hot stretching of the MWCNT/epoxy prepregs markedly improved the mechanical properties of the composites. The improved mechanical properties of stretched composites derived from the increased MWCNT volume fraction and the reduced MWCNT waviness caused by stretching. With a 3% stretch ratio, the MWCNT/epoxy composites achieved their best mechanical properties in this study. Although hot stretching of the prepregs increased the tensile strength and modulus of the composites considerably, its efficiency was lower than that of stretching the MWCNT sheets.  相似文献   

3.
Cryogenic mechanical properties are important parameters for epoxy resins used in cryogenic engineering areas. In this study, multi-walled carbon nanotubes (MWCNTs) were employed to reinforce diglycidyl ether of bisphenol F (DGBEF)/diethyl toluene diamine (DETD) epoxy system modified by poly(ethersulfone) (PES) for enhancing the cryogenic mechanical properties. The epoxy system was properly modified by PES in our previous work and the optimized formulation of the epoxy system was reinforced by MWCNTs in the present work. The results show that the tensile strength and Young’s modulus at 77 K were enhanced by 57.9% and 10.1%, respectively. The reported decrease in the previous work of the Young’s modulus of the modified epoxy system due to the introduction of flexible PES is offset by the increase of the modulus due to the introduction of MWCNTs. Meanwhile, the fracture toughness (KIC) at 77 K was improved by about 13.5% compared to that of the PES modified epoxy matrix when the 0.5 wt.% MWCNT content was introduced. These interesting results imply that the simultaneous usage of PES and MWCNTs in a brittle epoxy resin is a promising approach for efficiently modifying and reinforcing epoxy resins for cryogenic engineering applications.  相似文献   

4.
Uniform treatment of multiwalled carbon nanotubes by plasma treatment has been investigated using a custom-built stirring plasma system. A thin plasma polymer with high levels of amine groups has been deposited on MWCNTs using a combination of continuous wave and pulsed plasma polymerization of heptylamine in the stirring plasma system. Scanning electron microscopy showed that the plasma polymerization improved the dispersion and interfacial bonding of the MWCNTs with an epoxy resin at loadings of 0.1, 0.3 and 0.5 wt%. The flexural and thermal mechanical properties of plasma polymerized MWCNT/epoxy nanocomposites were also significantly improved while untreated MWCNT/epoxy nanocomposites showed an opposite trend. The epoxy with 0.5 wt% plasma polymerized MWCNTs had the greatest increase in flexural properties, with the flexural modulus, flexural strength and toughness increasing by about 22%, 17% and 70%, respectively.  相似文献   

5.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

6.
The paucity of structural defects in carbon nanotube (CNT) with unrivalled mechanical properties has always posed an interest to material scientists for its potential incorporation in soft polymer resins to achieve superior mechanical stability. Present investigation focuses on the assessment of flexural behaviour of glass/epoxy (GE) and multiwalled carbon nanotubes (MWCNT) embedded glass/epoxy (0.3 wt. % of epoxy) (CNT-GE) composites at different in-service environmental temperatures. In-situ 3-point bend tests were performed on GE and CNT-GE composites at −80 °C, −40 °C, room temperature (20 °C), 70 °C and 110 °C temperatures at 1 mm/min crosshead speed. The results revealed that at 110 °C temperature, the flexural strength of GE and CNT-GE composites was significantly decreased by 67% and 81% respectively in comparison to their strength at −80 °C temperature. Similarly, 38% and 77% decrement in modulus was noted for GE and CNT-GE composites respectively. Dynamic mechanical thermal analysis (DMTA) was carried out in the temperature range of −100 °C to 200 °C to correlate the mechanical and thermo-mechanical response of both the material systems. Addition of 0.3 wt. % MWCNT in GE composite resulted in lowering of glass transition temperature (Tg) by 12 °C. Furthermore, to understand various possible deformation and failure mechanisms, the post failure analysis of the fractured specimens, tested at different temperatures, was carried out using scanning electron microscope (SEM). The critical parameters needed during designing composite structures were calculated and modelled using Weibull constitutive model.  相似文献   

7.
Multi-walled carbon nanotube (MWCNT)/nanostructured zirconia composites with a homogenous distribution of different MWCNT quantities (ranging within 0.5-5 wt.%) were developed. By using Spark Plasma Sintering we succeeded in preserving the MWCNTs firmly attached to zirconia grains and in obtaining fully dense materials. Moreover, MWCNTs reduce grain growth and keep a nanosize structure. A significant improvement in room temperature fracture toughness and shear modulus as well as an enhanced creep performance at high temperature is reported for the first time in this type of materials. To support these interesting mechanical properties, high-resolution electron microscopy and mechanical loss measurements have been carried out. Toughening and creep hindering mechanisms are proposed. Moreover, an enhancement of the electrical conductivity up to 10 orders of magnitude is obtained with respect to the pure ceramics.  相似文献   

8.
Graphene nanopowder (GNP) and multi-walled carbon nanotube (MWCNT)-filled epoxy thin-film composites were fabricated using ultrasonication and the spin coating technique. The effect of sonication time (10, 20 and 30 min) and GNP loading (0.05–1 vol%) on the tensile and electrical properties of GNP/epoxy thin-film composites was investigated. The addition of GNP decreased the material’s tensile strength and modulus. However, among the tested samples, the GNP/epoxy composites produced using 20 min of sonication time had a slightly higher tensile strength and modulus, with a lower electrical percolation threshold volume fraction. The effect of sonication time was supported by morphological analysis, which showed an improvement in GNP dispersion with increased sonication time. However, GNP deformation was observed after a long sonication time. The GNP/epoxy composites at different filler loadings showed higher electrical properties but slightly lower tensile properties compared with the MWCNT/epoxy composites fabricated using 20 min of sonication time.  相似文献   

9.
Interlaminar shear properties of fibre reinforced polymer composites are important in many structural applications. Matrix modification is an effective way to improve the composite interlaminar shear properties. In this paper, diglycidyl ether of bisphenol-F/diethyl toluene diamine system is used as the starting epoxy matrix. Multi-walled carbon nanotubes (MWCNTs) and reactive aliphatic diluent named n-butyl glycidyl ether (BGE) are employed to modify the epoxy matrix. Unmodified and modified epoxy resins are used for fabricating glass fibre reinforced composites by a hot-press process. The interlaminar shear strength (ILSS) of the glass fibre reinforced composites is investigated and the results indicate that introduction of MWCNT and BGE obviously enhances the ILSS. In particular, the simultaneous addition of 0.5 wt.% MWCNTs and 10 phr BGE leads to the 25.4% increase in the ILSS for the glass fibre reinforced composite. The fracture surfaces of the fibre reinforced composites are examined by scanning electron microscopy and the micrographs are employed to explain the ILSS results.  相似文献   

10.
Carbon nanotubes (CNTs) are one of the prime choice nano-filler reinforcement for fibrous polymeric composites. But the stability of the CNT/polymer interface is yet to be ensured for elevated temperature engineering applications. Present study deals with the assessment of elevated temperature durability of glass fiber/epoxy (GE) composite with various level of multi walled carbon nanotube (MWCNT) loading. Flexural testing at room temperature revealed that addition of 0.1% MWCNT yielded maximum strength (+32.8% over control GE) and modulus (+11.5% over control GE) amongst all the CNT modified composite systems. Further, MWCNT–GE composites resulted in accelerated degradation of mechanical performance with increasing temperature as compared to GE composite. Dynamic mechanical thermal analysis (DMTA) was carried out to study the viscoelastic behavior of all composites over a range of temperature. The design parameters were evaluated by Weibull probability function. Fractographic analysis figured out various failure modes in all composites at various temperatures.  相似文献   

11.
The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.  相似文献   

12.
Experimentally achieved mechanical properties of nanotube–epoxy composites fail to match theoretical expectations; shortcomings are mainly attributed to poor dispersion. The elastic modulus of a well-dispersed single walled carbon nanotube (SWNT)-ionic liquid-epoxy composite was evaluated in tension and compared to predictions by a micromechanics homogenization model. The model takes into account the mechanical properties of the constituent phases in addition to SWNT aspect ratio, spatial distribution, dispersion, and agglomeration. These parameters were evaluated using information obtained via scanning and transmission electron microscopy. The Young’s modulus of the composite shows excellent agreement with the model at low concentrations, while discrepancies at high SWNT concentrations are possibly due to composite processing limitations. At high concentrations the uncured composite mixture is above the rheological percolation threshold. As the polymer network reaches its maximum capacity for well-dispersed SWNTs, increasing volume fraction does not result in further significant reinforcing effects.  相似文献   

13.
The anisotropic development of thermal conductivity in polymer composites was evaluated by measuring the isotropic, in-plane and through-plane thermal conductivities of composites containing length-adjusted short and long multi-walled CNTs (MWCNTs). The thermal conductivities of the composites were relatively low irrespective of the MWCNT length due to their high contact resistance and high interfacial resistance to polymer resins, considering the high thermal conductivity of MWCNTs. The isotropic and in-plane thermal conductivities of long-MWCNT-based composites were higher than those of short-MWCNT-based ones and the trend can accurately be calculated using the modified Mori-Tanaka theory. The in-plane thermal conductivity of composites with 2 wt% long MWCNTs was increased to 1.27 W/m·K. The length of MWCNTs in polymer composites is an important physical factor in determining the anisotropic thermal conductivity and must be considered for theoretical simulations. The thermal conductivity of MWCNT polymer composites can be effectively controlled in the processing direction by adjusting the length of the MWCNT filler.  相似文献   

14.
This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite–epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young’s modulus by 50%. These results were realized without compromise to the resin toughness.  相似文献   

15.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

16.
A series of biaxial static tests of E-glass/epoxy tubular specimens [±45]2, subjected to combined torsion and tension/compression were performed to simulate complex stress states encountered in a wind turbine rotor blade. The failure locus in the effective axial-shear stress plane was derived experimentally while in-plane strain tensor components were measured in the tube outer surface. By means of shell theory and strain measurements in the surface of the specimen, the in-plane shear response of the outer ply was obtained, revealing dependence each time to the combined tube loading. The correlation established between the ratio of transverse normal and in-plane shear stress in the principal coordinate ply system and the elastic shear modulus, suggested a strong dependence, warning on the implications for design and certification procedures.  相似文献   

17.
Herein we report the development and evaluation of hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing mats of electrospun carbon nanofibers (ECNs). The results indicated that (1) the interlaminar shear strength and flexural properties of hybrid multi-scale composite were substantially higher than those of control/comparison composite without ECNs; in particular, the interlaminar shear strength was higher by ∼86%; and (2) the electrical conductivities in both in-plane and out-of-plane directions were enhanced through incorporation of ECNs, while the enhancement of out-of-plane conductivity (∼150%) was much larger than that of in-plane conductivity (∼20%). To validate the data reduction procedure, a new shear stress formula was formulated for composite laminates, which took into account the effect of layup and inter-layers. The study suggested that ECNs could be utilized for the development of high-performance composites, particularly with the improved out-of-plan properties (e.g., interlaminar shear strength).  相似文献   

18.
This study investigated the stress recovery of aligned multi-walled carbon nanotubes (MWCNTs) embedded in epoxy using Raman spectroscopy, and evaluated interfacial shear stress between MWCNTs and epoxy using shear-lag analysis. To this end, ultralong aligned MWCNTs (3.8 mm long) were embedded in epoxy to obtain Raman spectra at multiple points along the MWCNTs. Downshift of the G′-band due to tensile strain was measured from the nanotube end to the center, and the strain distribution of embedded MWCNTs was evaluated successfully. Interfacial shear stress was then estimated by minimizing the error between the shear-lag analysis and measured strain distribution. The maximum interfacial shear stress between the embedded MWCNTs and epoxy was 10.3–24.1 MPa at the failure strain of aligned MWCNT-reinforced epoxy composites (0.46% strain). Furthermore, the interfacial shear stress between an individual MWCNT and epoxy was investigated.  相似文献   

19.
Epoxy composite beams reinforced with a complex three-dimensional (3D) skeleton structure of nanocomposite microfibers were fabricated via micro-infiltration of 3D porous microfluidic networks with carbon nanotube nanocomposites. The effectiveness of this manufacturing approach to design composites microstructures was systematically studied by using different epoxy resins. The temperature-dependent mechanical properties of these multifunctional beams showed different features which cannot be obtained for those of their individual components bulks. The microfibers 3D pattern was adapted to offer better performance under flexural solicitation by the positioning most of the reinforcing microfibers at higher stress regions. This led to an increase of 49% in flexural modulus of a reinforced-epoxy beam in comparison to that of the epoxy bulk. The flexibility of this method enables the utilization of different thermosetting materials and nanofillers in order to design multifunctional composites for a wide variety of applications such as structural composites and components for micro-electromechanical systems.  相似文献   

20.
This study presents results from a study of the mechanical behaviour of flax reinforced Poly(l-Lactic Acid) (PLLA) under in-plane shear and mode I interlaminar fracture testing. Slow cooling of the unreinforced polymer has been shown to develop crystalline structure, causing improvement in matrix strength and modulus but a drop in toughness. The in-plane shear properties of the composite also drop for the slowest cooling rate, the best combination of in-plane shear performance and delamination resistance is noted for an intermediate cooling rate, (15.5 °C/min). The values of GIc obtained at this cooling rate are higher than those for equivalent glass/polyester composites. These macro-scale results have been correlated with microdroplet interface debonding and matrix characterization measurements from a previous study. The composite performance is dominated by the matrix rather than the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号