首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.  相似文献   

2.
The influence of nanoclay on the impact damage resistance of carbon fibre–epoxy composites has been investigated using the low-velocity impact and compression after impact (CAI) tests. The load–energy vs. time relations were analyzed to gain insight into the damage behaviours of the materials. The CFRPs containing organoclay brought about significant improvement in impact damage resistance and damage tolerance in the form of smaller damage area, higher residual strength and higher threshold energy level. The presence of nanoclay in the epoxy matrix induced the transition of failure mechanisms of CFRP laminates during the CAI test, from the brittle buckling mode to more ductile, multi-layer delamination mode. Addition of 3 wt% clay was shown to be an optimal content for the highest damage resistance.  相似文献   

3.
The aim of this paper is to present an experimental study of impact and compression after impact (CAI) tests performed on composite laminate covered with a cork thermal shield (TS) intended for launchers fairing. Drop weight impact tests have been performed on composite laminate sheets with and without TS in order to study its effect on the impact damage. The results show the TS is a good mechanical protection towards impact as well as a good impact revealing material. Nevertheless, totally different damage morphology is obtained during the impact test with or without TS, and in particular at high impact energy, the delaminated area is larger with TS. Afterwards, CAI tests have been performed in order to evaluate the TS effect on the residual strength. The TS appears to increase the residual strength for a same impact energy, but at the same time, it presents a decrease in residual strength before observing delamination. In fact, during the impact tests with TS, invisible fibres’ breakages appear before delamination damage contrary to the impacts on the unshielded sheets.  相似文献   

4.
Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. Residual dent growth inwards toward the mid-plane of a sandwich panel followed by a complete separation of the face sheet is identified as the failure mode. CAI strength of sandwich panels is shown to decrease with increasing impact damage size. Destructive sectioning of sandwich panels is used to characterise damage parameters and morphology for implementation in a finite element model. The finite element model that accounts for relevant details of impact damage morphology is developed and proposed for failure analysis and CAI strength predictions of damaged panels demonstrating a good correlation with experimental results.  相似文献   

5.
The post-impact performance of different carbon-fabric-reinforced composite materials were studied experimentally and analytically. Three types of thermosetting matrix were considered: conventional epoxy, high-temperature curing epoxy and epoxy-isocyanate. Experimental testing consisted of impacting rectangular specimens at different energy levels by using a spring-driven impact apparatus that was able to impart velocities of up to 5 m s−1 to masses of 0.5, 1.0, 2.5 and 5.0 kg travelling horizontally. After impact, coupons were non-destructively inspected by means of opaque-enhanced dye-penetrant X-radiography and tested in static compression to correlate impact energy, damage extent and residual strength. Epoxy composites contain damage within a narrow region, while epoxy-isocyanate materials propagate the damage far away from impact point. Epoxy composites show an asymptotically decreasing failure strength with impact energy up to a lower threshold (0.3–0.4 times that of the undamaged material), while epoxy-isocyanate material shows a trend of ever decreasing residual strength. An analytical study was performed by means of the finite element code PAM-FISS, used to simulate the compression-after-impact (CAI) tests. Type, size and location of damage, as well as the mechanisms leading to final failure, were reproduced quite well by the finite element analysis (FEA), while some discrepancies between FEA and experimental CAI residual strength tests were found (7% for undamaged specimens and 10% for blister-delaminated specimens); higher errors were found in the case of completely delaminated specimens, mainly owing to the inability of the present software and hardware to conveniently model the complete state of damage.  相似文献   

6.
碳纤维夹芯板受到冲击载荷后易发生分层损伤,在工程应用中严重影响结构安全。首先对碳纤维/铝蜂窝夹芯板界面进行Kevlar短纤维增韧设计;其次对比研究了Kevlar短纤维界面增韧及未增韧夹芯板的低速冲击行为和冲击后压缩行为,将其冲击后剩余压缩强度、能量吸收及破坏模式进行对比;最后运用数字图像相关技术(DIC)获取增韧及未增韧试件在冲击后压缩过程中的应变云图。结果表明:低速冲击过程中,Kevlar短纤维增韧可以有效提高碳纤维/铝蜂窝夹芯板的冲击损伤阻抗,增韧试件的临界损伤阈值载荷明显高于未增韧试件;相比于未增韧试件,4种冲击能量下增韧试件的冲击后剩余压缩强度(CAI)值分别提高了2.68%、9.24%、4.65%、11.13%,能量吸收分别提高了69.09%、52.88%、55.03%、101.70%;对碳纤维/铝蜂窝夹芯板冲击后压缩过程中的DIC观测,进一步验证了芳纶短纤维对界面的增韧效果,并揭示了增韧界面对结构的增强机制。  相似文献   

7.
An instrumented drop-weight impact rig, ultrasonic C-scan and CAI test rig form a basic experimental system needed for the quantitative investigation of impact damage resistance and damage tolerance assessment. It is shown that it is essential to have an impact rig designed with certain traits along with other selected impact conditions so that dominant damage mechanisms occurring during impact can be identified with the threshold forces of recorded impact force-time curves. The so-determined impact force data are used to study impact damage resistance. It is demonstrated that the ratio of measured threshold impact forces is a useful alternative to residual compressive strength usually used for damage tolerance assessment. This provides a fast and cheap technique without resort to complex and expensive CAI tests.  相似文献   

8.
对增加了表面防护层的国产碳纤维/增韧环氧树脂CCF300/5228A层板的低速冲击及冲击后压缩性能进行了试验研究。通过落锤式低速冲击试验,得到了各组层板的冲击接触力历程、凹坑深度和内部分层面积等特征,而冲击后压缩试验结果可用来对各组层板的损伤容限性能进行评估。结果表明,同裸板相比,加了表面防护层的层板其分层起始载荷变化不大,但形成同样的1.0 mm凹坑所需的冲击能量增大了24%~46%。而对于内部分层,在一定的冲击能量范围下,加表面防护层的层板的C扫分层面积比裸板减小了20%~50%,而在同样凹坑深度的情况下,层板在加了表面防护层之后分层面积变化不大。冲击后压缩性能与内部分层情况具有较大的关联性,同样冲击能量下分层面积较小的各组带表面防护层板,其冲击后压缩强度和破坏应变相对于裸板的提高在15%~50%之间,而在凹坑深度相同的情况下,二者的冲击后压缩强度和破坏应变相差不大。  相似文献   

9.
张迪  郑锡涛  杨超 《复合材料学报》2016,33(5):1048-1054
为研究三维编织复合材料的损伤容限性能,首先,利用同种纤维、基体和工艺分别制作了4种三维编织复合材料和1种层合复合材料;然后,进行了相同复合材料在不同冲击能量下的及不同复合材料在相同冲击能量下的低速冲击试验和冲击后压缩试验;最后,进行了冲击后的C扫描损伤检测,并对比了冲击后凹坑深度、损伤面积和损伤宽度。结果显示:层合复合材料的损伤形貌主要呈椭圆状,且分层损伤严重,而三维编织复合材料的损伤形貌主要呈十字状,三维编织复合材料的整体性较好;层合复合材料和三维编织复合材料冲击能量的拐点均出现在30 J附近;三维编织复合材料的剩余压缩强度较高,其损伤容限性能优于层合复合材料。所得结论可为三维编织复合材料的工程应用提供指导。   相似文献   

10.
通过实验研究三维五向碳纤维/环氧树脂编织复合材料低速冲击及其冲击后压缩(CAI)性能。测试试件虽然有不同的编织角度,但承受相同的冲击能力。采用冲击后压缩测试表征不同编织结构的冲击后剩余力学性能。结果表明:编织角较大的试件由于其更紧密的空间结构,能承受更高的冲击载荷且冲击损伤区域更小。CAI强度和损伤机理主要取决于编织纤维束的轴向支撑。随着编织角的增加,CAI强度降低,材料的破坏模式也由横向断裂转变为剪切破坏。  相似文献   

11.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

12.
Sandwich panels are used in industrial fields where lightness and energy absorption capabilities are required. In order to increase their exploitation, a wide knowledge of their mechanical behavior also in severe loading conditions is crucial. Light structures such as the one studied in the present work, sandwich panels with aluminum skins and Nomex honeycomb core, are exposed to a possible decrease of their structural integrity, resulting from a low velocity impact. In order to quantitatively describe the decrease of the sandwich mechanical performance after an impact, an experimental program of compression after impact tests (CAI) has been performed. Sandwich panel specimens have been damaged during a low velocity impact test phase, using an experimental apparatus based on a free fall mass tower. Different experimental impact energies have been tested. Damaged and undamaged specimens have been consequently tested adopting a compression after impact procedure. The relation between the residual strength of the panel and the possible relevant parameters has been statistically investigated. The results show a clear reduction of the residual strength of the damaged panels compared with undamaged ones. Nevertheless, a reduced dependency between the impact energy and the residual strength is found above a certain impact energy threshold.  相似文献   

13.
A finite element model is proposed to determine the residual print of sandwich structures with Nomex honeycomb core and metallic skins indented by a spherical indenter and to simulate its behavior when this indented structure is subjected to lateral compressive loading (known as CAI/ Compression after impact). The particularities of this model rely on representing the honeycomb with a grid of non-linear springs which its behavior law calibrated from uniform compression test. This simple model, after integrating the cycle behavior law of honeycomb, allows predicting the geometry of residual print with a good precision. This model is then developed to propose a complete computation from indentation, residual print geometry to lateral compressive loading after indentation (CAI). This model also allows predicting numerically the residual strength of structure in CAI and the elliptical evolution of residual print geometry during CAI loading. A good correlation with test results is obtained except for the very small residual print depth.  相似文献   

14.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

15.
Laminated composites can undergo complex damage mechanisms when subjected to transverse impact. For unidirectional laminates it is well recognized that delamination failure usually initiates via intra-ply shear cracks that run parallel to the fibres. These cracks extend to the interface of adjacent orthogonal plies, where they are either stopped, or propagate further as inter-ply delamination cracks. These mechanisms largely determine impact energy absorption and post-delamination bending stiffness of the laminate. Important load transfer mechanisms will occur that may lead to fibre failure and ultimate rupture of the laminate. In recent years most Finite Element (FE) models to predict delamination usually stack layers of ply elements with interface elements to represent inter-ply stiffness and treat possible delamination. The approach is computationally efficient and does give some estimate of delamination zones and damaged laminate bending stiffness. However, these models do not properly account for coupled intra-ply shear failure and delamination crack growth, and therefore cannot provide accurate results on crack initiation and propagation. An alternative discrete meso-scale FE model is presented that accounts for this coupling, which is validated against common delamination tests and impact delamination from the Compression After Impact (CAI) test. Ongoing research is using damage prediction from the CAI simulation as a basis for residual strength analysis, which will be the published in future work.  相似文献   

16.
Barely Visible Impact Damage (BVID) can occur when laminated composite material is subject to out-of-plane impact loads and can result in a significant reduction in compressive strength. This paper reports on three compression tests of laminates optimised to maximise damage tolerance. Results from these tests were analysed using a semi-analytical, fracture mechanics based method that predicts the strain below which laminated coupons containing BVID subject to axial compression will not fail. A further experiment was conducted on an artificially delaminated coupon in order to validate the modelling methodology. Results from one of the two optimised stacking sequences considered show an increase of over 40% in Compression After Impact (CAI) strength compared with a baseline configuration. Analysis of results has indicated that CAI strength is dependent to a great extent on damage morphology and stability of damage growth, both of which are functions of laminate stacking sequence.  相似文献   

17.
为研究常用于飞机垂尾的复合材料加筋壁板的冲击疲劳特性,设计了该型加筋壁板多点冲击试验、高周疲劳试验及剩余压缩强度试验。讨论了不同冲击能量对筋条边缘冲击损伤的影响,及施加低应力水平的疲劳载荷后各冲击损伤区域的扩展情况,对比分析了疲劳对冲击后剩余压缩强度的影响。结果表明:40J能量冲击后的损伤面积和凹坑深度较大,C扫描损伤形貌很不规则。100万次低应力疲劳后主损伤区附近衍生出新损伤,导致压缩破坏时产生向上、下夹具扩展的裂痕。该型加筋壁板疲劳后破坏载荷保持率为95.6%,有较好的抗冲击疲劳能力,为加筋壁板耐久性及后屈曲设计提供了思路。  相似文献   

18.
本文研究了复合材料加筋板的筋条冲击损伤及冲击损伤对加筋板轴向压缩(CAI)行为的影响。针对T型单筋加筋板,通过落锤法从面板一侧对筋条进行5种能量水平的低速冲击。试验结果表明:冲击筋条产生的面板凹坑不易观察;当冲击能量低于筋条损伤门槛能量时,加筋板筋条无损伤出现,筋条-面板也不会发生脱粘;一旦冲击能量超过筋条损伤门槛能量,筋条的腹板会在弯曲拉伸应力作用下损伤,同时筋条-面板之间会出现严重脱粘。分别对完好和损伤试验件进行压缩试验,试验结果显示:低于门槛能量的冲击对加筋板的压缩屈曲载荷影响不大,同时只会略微降低失效载荷;而冲击造成筋条损伤后,筋条在压缩过程中会由于损伤扩展出现卸载;卸载后的筋条会对面板失去支撑,使面板的屈曲载荷降低,从而大幅地削弱加筋板的承载能力。  相似文献   

19.
复合材料层板低速冲击后剩余压缩强度   总被引:6,自引:1,他引:6       下载免费PDF全文
对两种材料体系和铺层的复合材料层合板进行低速冲击后压缩强度试验 , 以研究低速冲击后层合板的压缩破坏机理。讨论了表面凹坑深度、 背面基体裂纹长度、 损伤面积以及剩余压缩强度与冲击能量的关系。在试验研究的基础上 , 建立了复合材料低速冲击后剩余强度估算的一种椭圆形弹性核模型。该模型将冲击损伤等效为一刚度折减的椭圆形弹性核 , 采用含任意椭圆核各向异性板杂交应力有限元分析含损伤层合板的应力应变状态 ,并应用点应力判据预测层板的压缩(或压、 剪)剩余强度。理论分析与试验结果对比表明 , 该模型简单有效。   相似文献   

20.
对T300/QY8911复合材料层板进行了低速冲击、 冲击后压缩以及冲击后疲劳试验研究。通过对冲击后的层板进行目视检测和超声C扫描获得了层板受低速冲击后的若干损伤特征; 在压-压疲劳试验中, 测量了损伤的扩展情况。讨论了冲击能量与损伤面积以及冲击后剩余压缩强度的关系, 分析了含冲击损伤层合板在压缩载荷及压-压疲劳载荷下的主要破坏机制。结果表明, 低速冲击损伤对该类层板的强度和疲劳性能影响很大, 在3.75 J/mm的冲击能量下, 层板剩余压缩强度下降了65%; 在压-压疲劳载荷作用下, 其损伤扩展大致可分为两个阶段, 占整个疲劳寿命约60%的前一阶段损伤扩展较为缓慢; 而疲劳寿命的后半阶段损伤则开始加速扩展, 并导致材料破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号