首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The numerous structural applications of composites, coupled with their complex, rate-dependent mechanical behavior necessitate research into their mechanical response under dynamic loading scenarios. While the damage mechanisms of composites under dynamic compression loading are well-understood, measuring the occurrence of damage in a non-invasive manner is challenging. Toward this end, we investigate the electrical response of an embedded percolating carbon nanotube network in woven fabric/epoxy composites to dynamic compression loading. The percolating network is established through the use of a non-uniform dispersion of carbon nanotubes, achieved using a fiber sizing agent. The resulting conductive network is sensitive to delamination and damage occurring near the fiber surfaces. The dynamic mechanical response of the composite specimens is explored using Hopkinson bar methodology. Definite increases in baseline resistance of the conductive composite specimens are seen after repeated impacts demonstrating the ability of the carbon nanotube network of these conductively modified composites to respond electrically to damage induced during dynamic loading.  相似文献   

2.
The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites with and without secondary CNT reinforcement is simulated using multiscale 3D unit cells. The materials behavior under both mechanical cyclic loading and combined mechanical and environmental loading (with phase properties degraded due to the moisture effects) is studied. The multiscale unit cells are generated automatically using the Python based code. 3D computational studies of environment and fatigue analyses of multiscale composites with secondary nano-scale reinforcement in different material phases and different CNTs arrangements are carried out systematically in this paper. It was demonstrated that composites with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites.  相似文献   

3.
The effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites was evaluated. Alkali treatment of the fibers and reaction with organosilanes as coupling agents were applied to improve fiber–matrix adhesion. Fiber loadings of 1, 3, 5, and 7 wt% were incorporated to the phenolic matrix and tensile, flexural, morphological and thermal properties of the resulting composites were studied. In general, mechanical properties of the composites showed a maximum at 3% of fiber loading and a uniform distribution of the fibers in such composites was observed. Silane treatment of the fibers provided derived composites with the best thermal and mechanical properties. Meanwhile, NaOH treatment improved thermal and flexural properties, but reduced tensile properties of the materials. Therefore, the phenolic composite containing 3% of silane treated cellulose fiber was selected as the material with optimal properties.  相似文献   

4.
Short glass fiber reinforced polypropylene (sgf-PP) is increasingly employed in structural components which are subjected to a variety of loading conditions including tensile, compressive and bending loading modes. Since typical industrial components exhibit a wide range of fiber orientation distributions, their mechanical response to these loading conditions is also highly anisotropic. In this paper, the compression/tension asymmetry in the stress–strain behavior of sgf-PP is investigated from a macroscopic engineering and a micro-mechanisms of deformation and failure point of view for specimens with varying, precisely defined fiber orientations. Furthermore, we performed volume strain measurements and two-cyclic tests. We used the results to deduce the onset of damage due to cavitational mechanisms under tension and compared this to the onset of deviation of the tensile from the compressive stress–strain behavior. The results showed a good correlation for specimens with high fiber orientation, whereas for specimens with low fiber orientation results deviate due to the high deviatoric matrix volume strain contribution.  相似文献   

5.
The present work focuses on studying the multi-scale deformation and failure mechanisms of an orthogonally woven glass fiber reinforced composite as a function of fiber orientation angle using digital image correlation. The full-field displacement and strain localization are effectively captured at meso-scale. At continuum scale, a remarkable change in mechanical response is observed when the loading axis diverges from principal axes. The variation in the global mechanical response is observed to be most prominent in the change of stiffness and strain at failure. At meso scale, a high degree of local deformation heterogeneity is observed and the level of inhomogeneity is found to be more prominent in case of the 45° off-axis specimens. While fiber-pull out is the major failure mode in the case of specimen loaded parallel to 0° and 90° fiber orientation, the localized shear strain developed in polymer-rich regions is the driving failure cause in the case of 45° off-axis specimen.  相似文献   

6.
The growing use of polymer matrix composites in civil infrastructure, marine and military applications provides the impetus for developing mechanical models to describe their response under combined mechanical and fire loading. A viscoelastic stress analysis using classical lamination theory is conducted on an E-glass/vinyl ester composite. The model includes a characterization of the non-linear thermo-viscoelasticity and its inclusion into a compression strength failure criterion for the prediction of laminate failure under combined compressive load and temperature profile simulating fire exposure. By accounting for the viscoelastic non-linearity at Tg, the proposed model yields good predictions for lifetimes of the studied composite ([0/+45/90/−45/0]S).  相似文献   

7.
8.
Eshelby based Mean-Field homogenization is an effective method for modelling the mechanical response of short fiber reinforced composites. These models and especially the Mori–Tanaka model have been successfully used in previous studies for predicting the overall composite mechanical response. The present work describes a method for extending Mean-Field methods to discontinuous wavy fiber reinforced composites, including calculating local stresses in the fibers. The method involves discretization of a wavy fiber into smaller segments and replacing the original segments with an equivalent ellipsoids system which can be solved with Eshelby concept. The focus of this work is the validation of the local stress fields in fibers using Finite Element benchmarks of original Volume Elements (VEs) of wavy fibers. This validation is an essential basis for further accurate modelling of the damage behavior (i.e. debonding, fiber fracture) of discontinuous wavy fiber composites.  相似文献   

9.
This paper reports on the recent progress towards the development of power composite structures capable of energy harvesting and storage in addition to load bearing. The process of physically embedding all-solid-state thin-film lithium energy cells into a carbon fiber reinforced plastic (CFRP) and the performance of the resulting power composites are reported. The embedded thin-film lithium-ion energy cells did not significantly alter the mechanical properties of the composite (modulus and strength) under quasi-static uniaxial loading conditions. The embedded energy cells performed at baseline charge/discharge levels up to a loading of about 50% of the CFRP tensile strength.  相似文献   

10.
The objective of this research was to study the potential of waste agricultural residues such as rice-husk fiber (RHF), bagasse fiber (BF), and waste fish (WF) as reinforcing and biodegradable agents for thermoplastic composites. Addition of maleic anhydride grafted polypropylene (MAPP) as coupling agent was performed to promote polymer/fiber interfacial adhesion. Several composites with various polypropylene (PP) as polymer matrix, RHF, BF, WF, and MAPP contents were fabricated by melt compounding in a twin-screw extruder and then by injection molding. The resulting composites were evaluated through mechanical properties in terms of tensile, flexural, elongation at break and Izod notched impact following ASTM procedures. Biodegradability of the composites was measured using soil burial test in order to study the rates of biodegradation of the composites. In general, the addition of RHF and BF promoted an increase in the mechanical properties, except impact strength, compared with the neat PP. According to the results, WF did not have reinforcing effect on the mechanical properties, while it could considerably improve the biodegradation of the composites. It was found that the composites with high content of WF had higher degradation rate. Except impact strength, all mechanical properties were found to enhance with increase in cellulosic fiber loading In addition, mechanical properties and biodegradability of the composites made up using RHF was superior to those of the composites fabricated with BF, due to its morphological (aspect ratio) characteristics.  相似文献   

11.
In this study, manifold experiments were conducted to investigate the thermomechanical behavior of short E-glass fiber-reinforced polyamide 6.6 composites subjected to low cycle fatigue loadings. Different hygrometric states, fiber configurations and loading rates were considered. Mechanical, thermal and energy responses of composite specimens were recorded using photomechanic techniques. The influence of water content, fiber orientation and loading rate on these thermomechanical responses was systematically analysed.The mechanical findings indicated that the ratcheting phenomenon was more pronounced for humid composites reinforced with fibers oriented transversely and subjected to a low loading rate. Moreover, the order of magnitude in self-heating was greater for transversal fiber composites conditioned at high relative humidity and subjected to a 10 Hz loading rate. From a thermodynamic standpoint, we also noticed that high proportions of the mean stored energy rate were obtained at a high loading rate, with values exceeded 64%. These values were noticeably altered by the water content and fiber angles, i.e. lower as the relative humidity increased and higher as the fiber angles increased.  相似文献   

12.
This work developed flame retarded glass fiber reinforced polyamide 6 (FR-GFPA) composites with excellent mechanical properties, thermal stability and flame retardancy using a novel flame retardant, lanthanum hypophosphite (LaHP). The flame-retarded properties of FR-GFPA composites were characterized by limiting oxygen index, Underwriters Laboratories 94 testing and cone calorimeter test. FR-GFPA composite with 20 wt% LaHP reached V-0 rating and a high LOI value (27.5 vol%). The mechanical performance analysis showed that both the storage modulus and tensile strength increased and then decreased with the increase of LaHP loading. For FR-GFPA composite with 15 wt% LaHP loading, the storage modulus was 164% higher than that of glass fiber reinforced polyamide 6 (GFPA). Thermogravimetric analysis (TGA) and char residue characterization showed that the addition of LaHP can promote the formation of compact physical char barrier, reduce the mass loss rate and thus improve the flame retardancy of FR-GFPA composites.  相似文献   

13.
Sandwich composite are used in numerous structural applications, with demonstrated weight savings over conventional metals and solid composite materials. The increasing use of sandwich composites in defense structures, particularly those which may be exposed to shock loading, demands for a thorough understanding of their response to suc highly transient loadings. In order to fully utilize their potential in such extreme conditions, design optimization of the skin and core materials are desirable. The present study is performed for a novel type of sandwich material, TRANSONITE® made by pultrusion of 3-D woven 3WEAVE® E-glass fiber composites skin preforms integrally stitched to polyisocyanurate TRYMERTM 200L foam core. The effect of core stitching density on the transient response of three simply supported sandwich panels loaded in a shock tube is experimentally studied in this work. The experimental program is focused on recording dynamic transient response by high-speed camera and post-mortem evaluation of imparted damage. The obtained experimental results reveal new important features of the transient deformation, damage initiation and progression and final failure of sandwich composites with unstitched and stitched foam cores. The theoretical study includes full 3-D dynamic transient analysis of displacement, strain and stress fields under experimentally recorded surface shock pressure, performed with the use of 3-D MOSAIC analysis approach. The obtained theoretical and experimental results for the transient central deflections in unstitched and two stitched foam core sandwiches are mutually compared. The comparison results reveal large discrepancies in the case of unstitched sandwich, much smaller discrepancies in the case of intermediate stitching density, and excellent agreement between theoretical and experimental results for the sandwich with the highest stitching density. The general conclusion is that further comprehensive experimental and theoretical studies are required in order to get a thorough understanding of a very complex behavior of composite sandwiches under shock wave loading.  相似文献   

14.
A micromechanical study has been performed to investigate the mechanical properties of unidirectional fiber reinforced composite materials under transverse tensile loading. In particular, the effects of different properties of interphase within the representative volume element (RVE) on both the transverse effective properties and damage behavior of the composites have been studied. In order to evaluate the effects of interphase properties on the mechanical behaviors of unidirectional fiber reinforced composites considering random distribution of fibers, the interphase is represented by pre-inserted cohesive element layer between matrix and fiber with tension and shear softening constitutive laws. Results indicate a strong dependence of the RVE transverse effective properties on the interphase properties. Furthermore, both the damage initiation and its evolution are also clearly influenced by the interphase properties.  相似文献   

15.
This paper presents the development of a constitutive model able to accurately represent the full non-linear mechanical response of polymer-matrix fibre-reinforced composites with unidirectional (UD) plies under quasi-static loading. This is achieved by utilising an elasto-plastic modelling framework. The model captures key features that are often neglected in constitutive modelling of UD composites, such as the effect of hydrostatic pressure on both the elastic and non-elastic material response, the effect of multiaxial loading and dependence of the yield stress on the applied pressure.The constitutive model includes a novel yield function which accurately represents the yielding of the matrix within a unidirectional fibre-reinforced composite by removing the dependence on the stress in the fibre direction. A non-associative flow rule is used to capture the pressure sensitivity of the material. The experimentally observed translation of subsequent yield surfaces is modelled using a non-linear kinematic hardening rule. Furthermore, evolution laws are proposed for the non-linear hardening that relate to the applied hydrostatic pressure.Multiaxial test data is used to show that the model is able to predict the non-linear response under complex loading combinations, given only the experimental response from two uniaxial tests.  相似文献   

16.
Strengthening efficiency of multi-walled carbon nanotubes (MWCNTs) is investigated for aluminum-based composites with grain sizes ranging from ∼250 to ∼65 nm. The strength of composites is significantly enhanced proportional to an increase of the MWCNT volume. However, the increment differs depending on deformation mode of the matrix. The strengthening efficiency of MWCNTs in ultrafine-grained composites is comparable with that predicted by the discontinuous fiber model, whereas the efficiency becomes half of the theoretical prediction as grain size is reduced below ∼70 nm. For nano-grained aluminum, activities of forest dislocations diminish and dislocations emitted from grain boundaries are dynamically annihilated during the recovery process, providing a weak plastic strain field around MWCNTs. The observation may provide a basic understanding of the strengthening behavior of nano-grained metal matrix composites.  相似文献   

17.
Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different angles between the loading vector and fiber direction were carried out under scanning electron microscopy (SEM) in situ observation. The damage mechanisms as well as stress strain curves were obtained in the experiments. It was shown that the compressive strength of composites drastically reduces when the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure. With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational results correspond well to the experimental observations.  相似文献   

18.
Numerical unit cell models for 1–3 periodic composites made of piezoceramic unidirectional cylindrical fibers embedded in a soft non-piezoelectric matrix are developed. The unit cell is used for prediction of the effective coefficients of the periodic transversely isotropic piezoelectric cylindrical fiber composite. Special emphasis is placed on the formulation of the boundary conditions that allows the simulation of all modes of overall deformation arising from any arbitrary combination of mechanical and electrical loading. The numerical approach is based on the finite element method (FEM) and it allows the extension to composites with arbitrary geometrical inclusion configurations, providing a powerful tool for fast calculation of their effective properties. For verification the effective coefficients are evaluated for square and hexagonal arrangements of unidirectional piezoelectric cylindrical fiber composites. The results obtained from the numerical technique are compared with those obtained by means of the analytical asymptotic homogenization method (AHM) for different fiber volume fractions.  相似文献   

19.
Short fiber reinforced composites inherently have fiber length distribution (FLD) and fiber orientation distribution (FOD), which are important factors in determining mechanical properties of the composites. Since the internal structure has a direct effect on the mechanical properties of the composites, a Micro-CT was used to observe the three dimensional structure of fibers in the composites and to acquire FLD and FOD. It was successful to investigate FLD, FOD, and fiber orientation states and to predict the elastic modulus of the hybrid system. Since hybrid composites used in this study consist of three phases of particles, glass fibers, and matrix, theoretical hybrid modeling is required to consider reinforcing effects of both particles and glass fibers. Interaction between the particles and matrix was considered by using a perturbed stress–strain theory, the Tandon–Weng model. In addition, the laminating analogy approach (LAA) was used to predict the overall elastic modulus of the composite. Theoretical prediction of hybrid moduli indicated that there was a possibility of poor adhesion between glass fibers and matrix. The poor interfacial adhesion was confirmed by morphological experiments. This theoretical and experimental platform is expected to provide more insightful understanding on any kinds of multiphased hybrid composites.  相似文献   

20.
Effect of mercerization to tensile properties of a ramie fiber was explored. Load application technique during mercerization has been employed in order to improve mechanical properties of the fiber. A chemical treatment apparatus with tensile loading portion for applying monofilaments was newly developed. The ramie fiber was alkali-treated by 15% NaOH solution with applied loads of 0.049 and 0.098 N. The results showed that tensile strength of the treated ramie fiber was improved, 4–18% higher than that of the untreated ramie fiber, while Young’s modulus of the treated fibers decreased. It should be noted that fracture strains of the treated ramie fiber drastically increased to 0.045–0.072, that is, twice to three times higher than those of the untreated ramie fiber. It was considered that such property improvements upon mercerization were correlated with change of morphological and chemical structures in microfibrils of the fiber. Finally, the plastic deformation behavior and fracture mechanism of the mercerized fibers under tensile loading process was explained using a schematic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号