首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to optimize carbon nanotube (CNT) dispersion state in fiber/epoxy composite, a novel kind of CNT organization form of continuous networks was designed. The present work mainly discussed the feasibility of preparing continuous CNT networks in composite: Fiber fabric was immersed into CNT aqueous solution (containing dispersant) followed by freeze drying and pyrolysis process, prior to epoxy infusion. The morphologies of fabric with CNTs were observed by Scanning Electron Microscope. The relationship between CNT networks and flowing epoxy resin was studied. Properties of composite, including out-of-plane electrical conductivity and interlaminar shear strength (ILSS), were measured. The results demonstrated that continuous and porous CNT networks formed by entangled CNTs could be assembled in fiber fabric. Most part of them were preserved in composite due to the robustness of network structures. The preserved CNT networks significantly improved out-of-plane electrical conductivity, and also have an effect on ILSS value.  相似文献   

2.
In order to optimize the chemical vapor deposition process for fabrication of carbon nanotube/Al composite powders, the effect of different reaction conditions (such as reaction temperature, reaction time, and reaction gas ratio) on the morphological and structural development of the powder and dispersion of CNTs in Al powder was investigated using transmission electron microscope. The results showed that low temperatures (500-550 °C) give rise to herringbone-type carbon nanofibers and high temperatures (600-630 °C) lead to multi-walled CNTs. Long reaction times broaden the CNT size distribution and increase the CNT yield. Appropriate nitrogen flow is preferred for CNT growth, but high and low nitrogen flow result in carbon nanospheres and CNTs with coarse surfaces, respectively. Above results show that appropriate parameters are effective in dispersing the nanotubes in the Al powder which simultaneously protects the nanotubes from damage.  相似文献   

3.
The interest in carbon nanotubes (CNTs) as reinforcements for aluminium (Al) has been growing considerably. Efforts have been largely focused on investigating their contribution to the enhancement of the mechanical performance of the composites. The uniform dispersion of CNTs in the Al matrix has been identified as being critical to the pursuit of enhanced properties. Ball milling as a mechanical dispersion technique has proved its potential. In this work, we use ball milling to disperse up to 5 wt.% CNT in an Al matrix. The effect of CNT content on the mechanical properties of the composites was investigated. Cold compaction and hot extrusion were used to consolidate the ball-milled Al–CNT mixtures. Enhancements of up to 50% in tensile strength and 23% in stiffness compared to pure aluminium were observed. Some carbide formation was observed in the composite containing 5 wt.% CNT. In spite of the observed overall reinforcing effect, the large aspect ratio CNTs used in the present study were difficult to disperse at CNT wt.% greater than 2, and thus the expected improvements in mechanical properties with increase in CNT weight content were not fully realized.  相似文献   

4.
A reliable process for the design of blast-resistance composite laminates is needed. We consider here the use of carbon nanotubes (CNTs) to enhance the mechanical properties of composite interface layers. The use of CNTs not only enhances the strength of the interface but also significantly alters stress propagation in composite laminates. A simplified wave propagation simulation is developed and the optimal CNT content in the interface layer is determined using multi-objective optimization paradigms. The optimization process targets minimizing the ratio of the stress developed in the layers to the strength of that layer for all the composite laminate layers. Two optimization methods are employed to identify the optimal CNT content. A case study demonstrating the design of five-layer composite laminate subjected to a blast event is used to demonstrate the concept. It is shown that the addition of 2% and 4% CNTs by weight to the epoxy interfaces results in significant enhancement of the composite ability to resist blast.  相似文献   

5.
Carbon nanotube (CNT) reinforced composites have been identified as promising structural materials for the mechanical components of microelectromechanical systems (MEMS), potentially leading to advanced performance. High alignment and volume fraction of CNTs in the composites are the prerequisites to achieve such desirable mechanical characteristics. In particular, horizontal CNT alignment in composite films is necessary to enable high longitudinal moduli of the composites which is crucial for the performance of microactuators. A practical process has been developed to transfer CNT arrays from vertical to horizontal alignment which is followed by in situ wetting, realign and pressurized consolidation processes, which lead to a high CNT volume fraction in the range of 46-63%. As a result, SU8 epoxy composite films reinforced with horizontally aligned CNTs and a high volume faction of CNTs have been achieved with outstanding mechanical characteristics. The transverse modulus of the composite films has been characterised through nanoindentation and the longitudinal elastic modulus has been investigated. An experimental transverse modulus of 9.6 GPa and an inferred longitudinal modulus in the range of 460-630 GPa have been achieved, which demonstrate effective CNT reinforcement in the SU8 matrix.  相似文献   

6.
SnO-carbon nanotube composite was synthesized by a sol-gel method. The electrochemical behavior of the composite using an anode active material in lithium-ion batteries was investigated. It was found that the composite showed enhanced anode performance compared with the unsupported SnO or carbon nanotube (CNT). The capacity fade of the composite electrode was reduced over unsupported SnO or CNT. We attribute the results to the conductivity and ductility of the CNT matrix, and the high dispersion of SnO.  相似文献   

7.
The effective properties and local aggregation effect of CNT/SMP composites   总被引:1,自引:0,他引:1  
A micromechanics model of the thermomechanical constitutive behavior and micro-structural inhomogeneity of carbon nanotubes (CNTs)/shape memory polymer (SMP) composites is presented. It is assumed that the CNTs are elastic and the SMP obeys a thermomechanical constitutive law. The effective properties of CNT/SMP composites are examined using a micro-mechanics method. The effect of CNT aggregation in the composite, frequently encountered in real engineering situations, is studied. The degree of aggregation is described by an aggregation coefficient, and the effective properties of SMP composites with aggregated CNTs are calculated using a stepping scheme. It is shown that the degree of CNT aggregation dramatically influences the effective properties of the CNT/SMP composites. A homogeneous microstructure leads to maximum levels of effective composite properties.  相似文献   

8.
We have increased the tensile strength without compromising the elongation of aluminum (Al)–carbon nanotube (CNT) composite by a combination of spark plasma sintering followed by hot-extrusion processes. From the microstructural viewpoint, the average thickness of the boundary layer with relatively low CNT incorporation has been observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. Significantly, the Al–CNT composite showed no decrease in elongation despite highly enhanced tensile strength compared to that of pure Al. We believe that the presence of CNTs in the boundary layer affects the mechanical properties, which leads to well-aligned CNTs in the extrusion direction as well as effective stress transfer between the Al matrix and the CNTs due to the generation of aluminum carbide.  相似文献   

9.
Carbon fiber felt with carbon nanotubes (CNTs) were prepared by immersing three-dimensional (3D) felt into CNT aqueous solution (with dispersant) followed by removing water with different drying methods. Epoxy resin was then introduced into the felt to obtain 3D fiber felt/CNTs modified epoxy composites. This paper highlights the effect of drying method on macro-morphologies of the felt, morphological dispersion of CNTs and some relevant properties of the composites, including electrical conductivity and flexural performance. The results demonstrate that compared to the commonly used heat drying method, freeze drying technique possesses obvious advantages for the fabrication of fiber felt/CNT modified epoxy composites.  相似文献   

10.
Carbon nanotubes (CNTs) are one of the prime choice nano-filler reinforcement for fibrous polymeric composites. But the stability of the CNT/polymer interface is yet to be ensured for elevated temperature engineering applications. Present study deals with the assessment of elevated temperature durability of glass fiber/epoxy (GE) composite with various level of multi walled carbon nanotube (MWCNT) loading. Flexural testing at room temperature revealed that addition of 0.1% MWCNT yielded maximum strength (+32.8% over control GE) and modulus (+11.5% over control GE) amongst all the CNT modified composite systems. Further, MWCNT–GE composites resulted in accelerated degradation of mechanical performance with increasing temperature as compared to GE composite. Dynamic mechanical thermal analysis (DMTA) was carried out to study the viscoelastic behavior of all composites over a range of temperature. The design parameters were evaluated by Weibull probability function. Fractographic analysis figured out various failure modes in all composites at various temperatures.  相似文献   

11.
The development of a hierarchically engineered micro-nano hybrid composite system is described. A spray coating technique has been utilized as an effective way to deposit carbon nanotubes (CNTs) onto carbon fibre prepregs with good control of network formation and the potential for localization. Compared to more traditional approaches of introducing CNTs into epoxy matrices for enhancing composite properties, this technique has benefits in terms of its simplicity and versatility, as well as the potential for industrial scale-up. The effectiveness of the technique is demonstrated by the extremely low CNT loading (0.047 wt.%) needed to significantly increase the Mode-I fracture toughness of the carbon fibre laminates by about 50%, which is so far the largest reported improvement for such extremely low concentrations of non-functionalized CNTs. In-situ damage sensing has also been presented for the monitoring of structural health of these nano-engineered composite laminates upon loading, and a systematic analysis of sensing signals is performed.  相似文献   

12.
This paper proposes the correlation between the electrokinetic potential, dispersibility in solvents, surface energy and oxygen content of carbon nanotubes (CNTs) affected by functionalization. Colloidal systems consisting of CNTs with varying degrees of dispersion are prepared and characterized to evaluate CNT dispersibility and suspension stability in solvents with different polarities. The results show that an absolute value of zeta potential at about 25 mV is closely related to the micro- and macroscopic dispersion of CNTs, whereas a high absolute value of 40 mV is regarded as an indication of high quality CNT dispersion with much enhanced suspension stability in solvents. The absolute zeta potential value increases consistently with increasing degree of CNT functionality, the increase being most pronounced in a hydrophilic liquid such as water. A linear correlation is established between the surface energy of a CNT film and the oxygen to carbon ratio of CNT surface. The CNT dispersibility in a liquid is determined not only by their physical states, but also by the hydrophilicity and surface functionality of CNTs, all of which are reflected by zeta potential.  相似文献   

13.
Highly ablation resistant carbon nanotube (CNT)/phenolic composites were fabricated by the addition of low concentrations of CNTs. Tensile and compressive mechanical properties as well as ablation resistance were significantly improved by the addition of only 0.1 and 0.3 wt% of uniformly dispersed CNTs. An oxygen–kerosene-flame torch and a scanning electron microscope (SEM) were used to evaluate the ablative properties and microstructures. Thermal gravimetric analysis (TGA) revealed that the ablation rate was lower for the 0.3 wt% CNT/phenolic composites than for neat phenolic or the composite with 0.1 wt% CNTs. Ablation mechanisms for all three materials were investigated using TGA in conjunction with microstructural studies using a SEM. The microstructural studies revealed that CNTs acted as an ablation resistant phase at high temperatures, and that the uniformity of the CNT dispersion played an important role in this ablation resistance.  相似文献   

14.
Carbon-based nanomaterials are great choice as reinforcement to Ultra-High Molecular-Weight Polyethylene (UHMWPE), with potential use in orthopedics. While high in-plane-stiffness and strength of these nanomaterials help in toughening, their weaker out-of-plane integrity offers lubrication. Present study investigates effect of aspect ratio of carbon nanotubes (CNT) on toughening and solid-lubrication efficiency of UHMWPE-matrix. A nominal 0.05–0.1 wt.% of CNT addition increases hardness and elastic modulus of UHMWPE by 3–45% and 8–42%, respectively. Higher aspect ratio (HAR) CNTs are found more effective in improving hardness and modulus of UHMWPE. Wear rate and friction-coefficient also increase by 530% and 220%, respectively, while reinforced with HAR CNTs. Thermal analysis shows slight increase in crystallinity and stability of composite. HAR CNTs improve interfacial bonding with matrix, due to their morphological similarity to polymer chains, as compared to low aspect ratio CNT. Aspect ratio of CNTs significantly dominates strengthening and tribological behavior of UHMWPE.  相似文献   

15.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

16.
For these two decade, tremendous amount of researches and developments dealing with carbon nanotubes (CNTs) have been carried out. Most of them are focusing on finding the unique and outstanding properties of CNTs and trying to utilizing them as the advanced materials. Whenever we start the research and the development of CNTs, the first difficulty is the dispersion of CNTs into the solvents since the CNTs form strong aggregation. Up to date, large efforts have been carried out for the preparation of CNT dispersion and the typical strategies are summarized. Such a dispersion technique allows us to use CNT as a material. Several applications of the CNT dispersion is also introduced.  相似文献   

17.
Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or completely new set of physical properties due to the addition of CNTs. However, the physics of interactions between CNT and its surrounding matrix material in such nano-composites has yet to be elucidated and methods for determining the parameters controlling interfacial characteristics such as interfacial shear stress, is still challenging. An improvement of the physical properties of polymer nanocomposites, based on carbon nanotubes (CNTs), is addicted to a good dispersion and strong interactions between the matrix and the filler.  相似文献   

18.
Carbon nanotube/teflon composite electrochemical sensors and biosensors   总被引:15,自引:0,他引:15  
The fabrication and attractive performance of carbon nanotube (CNT)/Teflon composite electrodes, based on the dispersion of CNT within a Teflon binder, are described. The resulting CNT/Teflon material brings new capabilities for electrochemical devices by combining the advantages of CNT and "bulk" composite electrodes. The electrocatalytic properties of CNT are not impaired by their association with the Teflon binder. The marked electrocatalytic activity toward hydrogen peroxide and NADH permits effective low-potential amperometric biosensing of glucose and ethanol, respectively, in connection with the incorporation of glucose oxidase and alcohol dehydrogenase/NAD(+) within the three-dimensional CNT/Teflon matrix. The accelerated electron transfer is coupled with minimization of surface fouling and surface renewability. These advantages of CNT-based composite devices are illustrated from comparison to their graphite/Teflon counterparts. The influence of the CNT loading upon the amperometric and voltammetric data, as well as the electrode resistance, is examined. SEM images offer insights into the nature of the CNT/Teflon surface. The preparation of CNT/Teflon composites overcomes a major obstacle for creating CNT-based biosensing devices and expands the scope of CNT-based electrochemical devices.  相似文献   

19.
The atomistic simulations of carbon nanotube (CNT) – carbon reinforced composite material are reported. The studied composite samples are obtained by impregnating certain amounts of CNTs (3,3) and (6,6) into a pristine graphite matrix. The addition of CNTs is found to be of significant usefulness for the CNT–reinforced composites, since it allows to achieve extreme lightness and strength. Being impregnated into graphite matrix, CNTs are able to increase the critical component of its initially highly anisotropic Young modulus by 2–8 times. The linear thermal expansion coefficients do not exceed 10−6 to 10−5 K−1, making this material applicable for novel aviation and space vehicles. The degree of dispersion of CNTs within graphite matrix is found to drastically influence composite properties.  相似文献   

20.
Twin-screw extrusion was applied to prepare the carbon nanotubes/polylactic acid (CNT/PLA) nanocomposites. Five different extruded plates were produced under variation of CNT concentrations. The internal microstructures were also observed by optical microscope to examine the distribution and dispersion of CNT in the PLA. Besides, the crystallinity of the CNT/PLA nanocomposites was investigated by differential scanning calorimetry (DSC) and density method. The effects of the CNT concentrations on the mechanical and electrical properties of the nanocomposites were investigated. Scanning electron microscope (SEM) was performed to observe the CNT dispersion in the nano-scale. These results suggested that the crystallinity was increased with the increase of CNT concentrations, demonstrating that CNT played a role as a nucleating agent in PLA. Moreover, the mechanical and electrical properties of PLA have been improved by a proper incorporation of CNTs due to a good distribution and dispersion of the CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号