首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
近年来,镁合金作为“可降解医用金属材料”越来越受到研究人员的青睐。然而,镁合金的腐蚀降解较快导致的力学衰减显著、材料与骨愈合的适配性减弱是当前限制其临床应用的瓶颈性问题。微弧氧化作为一种有效的减缓镁合金降解速率措施,具有工艺简单、成膜效率高、膜层整体综合性能优异等优点,实现了降解速度可调控与改善生物相容性双重功能。本文主要从微弧氧化(MAO)涂层形成机制及膜层降解机理出发,综述了生物医用镁合金微弧氧化涂层研究进展;详细阐述了微弧氧化涂层镁合金的膜层形成/破裂机制;系统地归纳了微弧氧化工艺参数和涂层降解性能、生物相容性的本质联系;揭示了自封孔型氧化膜的生长机制、封孔物质的沉积过程及其保留在微孔内的原因;概述了复合表面处理技术的膜层物相特征及仿生溶液环境下降解行为规律。最后,展望了医用镁合金微弧氧化涂层的未来发展方向。  相似文献   

2.
唐洋洋  李林波  王超  杨潘  杨柳  王丹 《表面技术》2022,51(4):66-76, 91
微弧氧化(MAO)表面处理技术常用于改善镁合金的特定性能,但MAO膜容易产生微孔和微裂纹从而降低镁合金的耐蚀性。为了提高镁合金微弧氧化膜的使用寿命,主要综述了国内外MAO工艺过程调节措施和MAO膜后处理技术的最新研究进展,重点介绍了近年来国内外镁合金MAO复合膜的研究热点。着重介绍了通过工艺过程调节提高镁合金MAO膜长期保护性能的几项措施:通过电参数和电源类型调节协同电解液成分调整提高MAO膜耐蚀性;通过加入电解液添加剂提高MAO电解液稳定性和电导率;利用具有自封孔作用的添加剂可以参与成膜的特点提高MAO膜致密性;通过复合工艺在MAO膜传统封孔后进一步封闭孔隙。此外,详细介绍了包括疏水涂层、化学镀、类金刚石涂层、生物膜涂层等复合膜工艺的研究进展,强调了复合膜不仅耐蚀性高而且具有功能化应用前景:超疏水复合膜对镁基底具有主动的腐蚀保护作用,超疏水膜协同MAO膜可以提高表面的疏水性;镀镍层致密无微孔且与MAO膜交错咬合能够改善镁MAO膜的导电性和耐蚀性;MAO涂层代替金属缓冲层能够提高类金刚石涂层和基体界面结合强度;生物复合涂层不仅耐蚀性高还具有促进细胞增殖和分化生物活性的作用。最后,基于镁...  相似文献   

3.
为了提高AZ31镁合金的耐蚀性和金属有机骨架MOFs涂层的结合力,通过在AZ31镁合金微弧氧化(MAO)涂层上原位生长,制备MAO/ZIF-67(微弧氧化/钴基金属有机骨架)复合涂层。结果表明,具有菱形十二面体的ZIF-67在MAO涂层表面均匀生长,与基体具有良好的附着力,这使得MAO/ZIF-67复合涂层具有良好的耐蚀性。实验证明,ZIF-67能有效封闭MAO涂层的孔隙,增加腐蚀介质侵入路径的曲折度,显著提高镁合金的耐蚀性。此外,MAO预处理使涂层具有强的附着力,这更有利于ZIF-67密封微孔。本研究对于降低MOF涂层在所有金属基底上的应用限制具有重要意义。  相似文献   

4.
镁及镁合金由于其良好的生物相容性和可降解性能,在生物医用材料领域具有巨大的应用潜力。然而,过快的降解速率限制了其临床应用。羟基磷灰石(HA)涂层具有良好的骨诱导性和骨传导性,可以有效地延缓镁及镁合金的腐蚀速率。但是,单一的羟基磷灰石涂层不能满足镁基植入物的使用寿命要求,因此需对其进一步的改性。本文从生物相容性、可降解性以及力学性能等方面综述镁合金表面以羟基磷灰石为基础,以高分子材料、无机材料以及离子掺杂而成的可降解镁基HA复合涂层的发展和研究现状。  相似文献   

5.
目的 在可降解镁合金表面制备缓蚀剂覆载的微弧氧化/聚乳酸-羟基乙酸(PLGA)复合涂层,提高其耐蚀性.方法 首先利用微弧氧化技术在镁合金表面制备出适合复合缓蚀剂涂层的微弧氧化(Micro-Arc Oxidation,MAO)涂层,之后在微弧氧化多孔涂层上浸涂PLGA-缓蚀剂涂层,得到复合涂层,缓蚀剂选择天然植物提取物姜黄素(Curcumin,Cur).利用SEM&EDS、FTIR和AFM等实验对涂层形貌、成分及结构进行分析,通过电化学测试、体外浸泡实验评价涂层的耐蚀性能.结果 FTIR结果表明Cur可成功覆载在涂层中,且不与PLGA发生反应.电化学测试和体外浸泡实验表明MAO/PLGA-Cur涂层能有效提高镁合金的耐蚀性.动电位极化曲线显示MAO/PLGA-Cur涂覆样品的腐蚀电流密度比基体下降了3个数量级,浸泡14 d的质量损失比基体下降62.04%,比未覆载的样品减少26.63%.结论 MAO时间为10 min为最合适复合缓蚀剂涂层的参数.Cur作为缓蚀剂的最佳添加量为0.12%,PLGA的最佳添加量为12%,最佳浸涂角度为0°.  相似文献   

6.
近年来,镁及镁合金由于其生物可降解性和良好的生物相容性,在医疗器械领域的应用获得了迅速的发展,然而过快的降解速率限制了其在临床上的应用。可生物降解有机高分子涂层是一种降低镁及镁合金降解速率的有效表面改性方法,同时还可赋予镁及镁合金医疗器械多种功能性。首先综述了可降解有机高分子涂层对镁及镁合金耐腐蚀性能和生物相容性的影响。可降解聚合物涂层能阻碍腐蚀性介质与基体的接触,从而延长其降解时间。而涂层对基体的保护提供了碱性较弱的环境,更利于细胞的生长增殖;同时涂层随着基体一起降解,可降低聚合物长期存在生物体内可能引发炎症反应的风险。此外,对聚合物涂层在骨科以及心血管支架领域的应用以及进展进行了综述。一方面,可降解聚合物涂层能显著延长镁及镁合金在生物体内的作用时间;另一方面,涂层可以作为载体材料通过携带具有不同功能的试剂或者药物实现医疗器械的功能化,如促进骨愈合和药物的可控释放。因此,可降解聚合物涂层在镁和镁合金器械领域必将起到无可替代的作用。  相似文献   

7.
为进一步提高镁合金微弧氧化多孔陶瓷层的耐蚀性,采用原位水热法及硬脂酸表面改性方法,在陶瓷层表面制备超疏水镁铝层状双金属氢氧化物(Mg-Al LDH)涂层。采用X射线衍射议、扫描电子显微镜及能谱仪研究涂层的结构、形貌及成分,研究水热处理时间对Mg-Al LDH膜形成的影响。结果表明,随着水热处理时间的延长,原位生长的Mg-AlLDH将MAO陶瓷层表面的微孔和微裂纹逐渐闭合。电化学测试结果表明,与MAO陶瓷层和LDH/MAO涂层相比,超疏水LDH/MAO复合涂层具有最低的腐蚀电流密度、最正的腐蚀电位以及最大的阻抗模量;浸泡实验结果证明,具有主动防护性能的超疏水LDH/MAO涂层可以显著提高MAO陶瓷层的长期耐腐蚀性能。  相似文献   

8.
为了进一步提升镁合金耐蚀性,将水滑石(layered double hydroxides LDH)与微弧氧化结合(MAO)制备一种主动防护的高耐蚀复合涂层。本文采用原位法成功在AZ31镁合金MAO涂层表面制备了层间含NO3-的MgCr-LDH层,构成LDH/MAO复合涂层,研究原有MAO涂层表面LDH的微观组织结构及其与原始MAO涂层的相互作用,并利用长时间浸泡法和电化学法测试MgCr-LDH/MAO复合涂层试样在3.5wt%NaCl溶液中的耐蚀性能,揭示LDH层耐蚀保护机理,研究结果显示:LDH易于在镁合金表面MAO层的孔洞中形成,最终生成均匀致密片状结构的层。LDH的原位生长过程对原始MAO涂层没有破坏,MgCr-LDH与MAO涂层之间属于化学结合,具有强的粘附性与机械稳定性。MgCr-LDH/MAO复合涂层明显提高了AZ31镁合金的耐腐蚀性能,LDH层的其防腐保护机制主要表现为两部分,一是LDH均匀形成于原始MAO层上,有效的覆盖了MAO层的孔洞与裂纹,阻挡氯离子通过MAO涂层的固有缺陷进入合金基体产生破坏。二是LDH的硝酸根层间阴离子能够与腐蚀环境中的氯离子进行离子交换,降低溶液中的氯离子浓度,从而延长涂层的耐蚀保护性。  相似文献   

9.
为提高AZ91D镁合金基体的耐蚀性,采用微弧氧化、电沉积和自组装工艺在AZ91D镁合金表面制备了微弧氧化/氧化石墨烯/硬脂酸(MAO/GO/SA)复合涂层。通过SEM对复合涂层的微观组织结构进行了分析,利用电化学阻抗谱、极化曲线测试了复合涂层的耐蚀性能。结果表明,最佳电沉积电压为4 V,此时,MAO/GO复合涂层的电荷转移电阻(Rct)为4.41×105Ω·cm2,腐蚀电流密度(Jcorr)为3.88×10-7 A/cm2。醇水比为7∶3时,MAO/GO/SA复合涂层的Rct值为3.07×106Ω·cm2,Jcorr为3.02×10-8 A/cm2,达到超疏水状态,涂层耐蚀性最好。  相似文献   

10.
为了研究淫羊藿苷含量对镁/超声微弧氧化/壳聚糖/淫羊藿苷(Mg/UMAO/CS/IC)涂层性能的影响,并提高纯镁的耐蚀性,采用电泳沉积(EPD)和UMAO技术在纯镁基体上制备Mg/UMAO/CS/IC涂层。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和傅立叶变换红外光谱(FTIR)对涂层的特征进行分析。对不同样品在模拟体液中进行了电化学阻抗和动电位极化的腐蚀行为研究。结果表明:当IC含量为0.4 g/L时CS/IC层具有较好的封孔效果。添加不同IC含量的Mg/UMAO/CS/IC涂层均由Mg、MgO、CS和Mg2SiO4组成。不同IC含量涂层的自腐蚀电流密度(icorr)比Mg至少都低一个数量级,能为镁基底提供更有效的保护。IC含量为0.4 g/L时Mg/UMAO/CS/IC涂层的耐蚀性更好,自腐蚀电流密度(1.667×10-6 A/cm2)最小。Mg/UMAO/CS/IC涂层可有效解决纯镁在临床骨内固定应用上降解过快的问题。  相似文献   

11.
相比于钛合金、不锈钢、钴基合金等传统生物医用金属材料,镁合金不仅具有生物可降解特性,而且其弹性模量与人体骨骼很接近,不容易产生“应力屏蔽”,被誉为“新一代先进生物材料”。但镁合金在人体降解速率过快,由此产生的力学失稳和过量降解产物在体内的代谢吸收隐患限制了其在外科植介入医疗领域的大量推广应用。而可生物降解或可吸收的天然和合成高分子(聚合物)是全球量大面广的一类质轻、多功效、生物安全性好的生物医用材料,若将其作为可降解镁合金表面的特种防护涂层并解决好两者表界面之间的生物功能性和力学相容性,将是开发先进镁合金材料及其应用的重要发展方向。本文综述了生物可降解的镁基合金表面天然及合成高分子涂层的最新研究进展,并对其未来的研发及应用发展趋势提出展望。  相似文献   

12.
镁及其合金作为新一代生物医用可降解材料,具有良好的经济性、力学性能、生物相容性、可降解性能,在骨科、心血管科、消化科等领域具有广阔的应用前景。镁合金具有较高的化学活性,因此其降解速率较快,力学性能的维持受限,植入时可能发生的细菌感染会引发炎症和腐蚀加速等问题,因此需要通过表面改性来制备多功能一体化的涂层。综述了医用可降解镁合金作为接骨板、螺钉、血管支架、胃肠吻合器、胆管支架等植入材料的应用现状及最新研究成果。讨论了医用可降解镁合金在植入生物体时面临的析氢、pH升高、腐蚀加速、力学性能衰减、稀土元素毒性及内膜增生等具体问题,在此基础上,考察了化学转化、等离子喷涂、微弧氧化、聚合物涂层等4种镁合金表面改性技术的最新研究动态。结合体内试验和体外试验,概述了表面改性对镁合金安全性、耐蚀性、抗菌性、生物相容性等方面的影响,并简要对比了几种表面改性技术的优缺点。最后展望了医用可降解镁合金表面改性技术的发展方向。  相似文献   

13.
镁及镁合金具有与骨骼硬组织良好的力学性能适配性、生物相容性和体内可生物降解等优良特性,被认为是一种最具有应用潜力的新型外科金属基植入材料,但其过快的降解速度限制了它的应用和普及推广。羟基磷灰石(HA)具有良好的生物活性,在镁合金表面制备HA涂层,能有效增强镁合金植入体的活性和耐腐蚀性,延缓其降解速率。但纯的HA涂层存在脆性大,强韧性不足,与基体间黏附力较差且功能性单一等问题,因此开发镁合金表面的高品质、多功能HA复合涂层,具有非常重要的科学和实践价值。本文综述了近年来开发的在镁合金基体表面的HA复合涂层及在骨修复上应用的研究进展,并对未来镁合金基体表面HA复合涂层的研究发展趋势进行了展望。  相似文献   

14.
镁合金凭借其优异的生物安全性、良好的载荷传递性及独特的降解性,在医用植入领域表现出巨大的应用潜力和发展前景。然而镁合金在生理环境下的腐蚀溶解速率过快,导致材料力学性能衰减加速进而过早失效。表面改性作为镁合金耐蚀性能提升的重要途径,不仅能通过表层物理屏障的形成来减缓金属材料的溶解速率,还能抑制合金内部腐蚀电偶反应的强烈程度及调控其生物相容性。概述了典型表面改性工艺的技术优势,包括涂层在合金表面的多覆盖度、高膜层厚度、强附着力以及良好生物相容性等。同时归纳了几种表面改性工艺所存在的问题,包括较差的长期耐蚀性、低应力承受能力以及技术安全性等。在此基础上,重点综述了近年来镁合金表面改性涂层的最新研究动态,其中简要介绍了化学转化、微弧氧化、等离子喷涂等几种常见的表面改性涂层形成机制。系统阐述了涂层对镁合金降解过程和生物相容性的影响规律,以及部分元素或粒子对涂层微观结构以及生物性能的作用机理。最后展望了医用镁合金表面改性涂层的发展方向。  相似文献   

15.
生物医用镁及镁合金可降解吸收,具有良好的生物相容性,弹性模量与人体骨接近,是理想的人体植入物材料。在体液环境中,医用镁合金腐蚀速率较快,常常导致植入物过早失效。对镁合金表面进行适当改性,可调控合金降解速率、提高生物相容性。最常见的表面改性方法是在镁合金表面生成保护性涂层,这些涂层主要包括可降解高分子涂层和一些无机涂层。综述了近几年可生物降解镁及镁合金的表面改性涂层及改性技术的最新研究动态,探讨了镁及镁合金表面制备无机涂层和可降解高分子涂层的一些改性方法;简要介绍了阳极氧化、微弧氧化、离子注入、溶胶-凝胶、等离子喷涂及化学沉积等表面改性方法的原理,并比较其优缺点;提出了可生物降解镁及镁合金表面改性涂层研究中面临的问题,并展望了未来发展方向。  相似文献   

16.
镁及镁合金因其密度低、弹性模量与硬组织匹配、可降解吸收以及具有优异的生物相容性等优点已成为可降解生物材料领域的研究热点。但镁合金体内降解速率过快且降解时产生析氢反应并引发局部pH环境升高,这会影响周围组织的生长,甚至会发生溶血、溶骨现象,这严重限制其在临床上应用。采用添加适当合金元素以及镁合金表面改性被认为是减缓镁合金腐蚀速率以期达到其降解行为可控的有效方法。综述了可降解镁合金抗菌性和溶血性能的研究状况,系统阐述了近5年来可降解镁合金生物相容性的最新进展,展望了医用可降解镁合金未来的研究方向和挑战。  相似文献   

17.
The main problem limiting the application of magnesium alloys as biodegradable implant material is its high degradation rate. In order to slow down the corrosion rate an extrusion process and specific coating systems based on plasma‐chemical oxidation (PCO) and organic dip coating with poly(L ‐lactid‐co‐caprolacton) (PLLC) were applied on Mg–1Ca magnesium alloy. The additional PLLC coating is used to delay the start of substrate corrosion, while the purpose of the PCO coating is to decrease the substrate corrosion rate. The corrosion behaviour was investigated in synthetic body fluid (SBF) through measurement of the hydrogen evolution rate in long term tests and polarisation and electrochemical noise measurements in short term tests. The results showed significant differences between the cast and extruded alloys and a decrease of the corrosion rate due to corrosion product formation. The combination of both coating systems resulted in a significant delay of metal substrate corrosion and all coating systems showed good correlation between short and long term tests. The combination of the three investigation methods provides the possibility to gain more information about the degradation behaviour and break down of protective coatings.  相似文献   

18.
镁合金具有高比强度与良好的生物相容性,是一种理想的骨植入材料。因镁合金降解速率过快在临床应用中受到限制,通过SLM可对其合金化并改善耐蚀性能。利用SLM成型Mg-1Zn-xGd(x=0、0.25、0.5、1、2 wt%)合金,测试镁合金在模拟体液中浸泡72 h平均腐蚀速率变化趋势,采用SEM、EDS与TEM检测手段辅助分析腐蚀机理。实验结果表明,Gd含量对镁合金腐蚀速率影响显著,添加0~2 wt% Gd后镁合金降解速率呈先降低后升高趋势,在添加0.5 wt% Gd时镁合金具有最佳耐腐蚀性能。腐蚀反应产生的表面钝化膜能够一定程度减缓腐蚀的进行,添加过量Gd后沿晶界析出Mg5Gd相增多加剧了镁合金腐蚀。  相似文献   

19.
镁合金作为生物医用植入材料的研究进展   总被引:1,自引:0,他引:1  
镁合金具有优良和独特的物理、化学和力学特点,其比强度和比刚度在金属材料中最好,同时又具有良好的生物相容性,甚至可以在生物体内自动进行降解,因此镁合金作为生物医用金属植入材料有明显的性能优势,在医用植入材料领域有着巨大的潜力和广阔的应用前景。本文针对医用植人材料特性的要求,对镁合金作为医用植入材料的可行性,和它与其他生物植入材料比较所具有的性能优势和特点进行了综述,并根据镁合金的性能特点,提出了开发医用植入镁合金材料的关键技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号