首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper aims to explore the dynamic responses and crashing characteristics of double hat shaped tubes made of weave carbon fiber reinforced plastic (CFRP). Experimental investigations were carried out into three different thicknesses and lengths of the composite tubes fabricated by the bladder molding process. Three distinct failure modes, classified as progressive end crushing, mid-length collapse and overlap opening, were observed in the dynamic crushing tests. Unlike continuous splaying fronds observed in the quasi-static tests, dynamic tests exhibited a number of fragment segments in the progressive end crushing mode. It is shown that the ply number was a critical parameter affecting the failure mode and energy absorption capability. The increase in ply number led to increases in the peak load and specific energy absorption (SEA); whereas the tubal length seemed insensitive to energy absorption capability. Compared to the quasi-static cases, the dynamic impact tests resulted in the higher peak load (increased from 46 % to 125 %) and lower SEA (reduced from 21 % to 33 %) for the tested tubes.  相似文献   

2.
This study investigated the energy absorption response and load carrying capability of woven natural silk/epoxy–triggered composite rectangular tubes subjected to an axial quasi-static crushing test. The rectangular composite tubes were prepared by hand lay-up technique. The tubes consisted of 12, 24, and 30 layers of natural woven silk/epoxy laminate and were 50, 80, and 120 mm long. The crashworthiness of the tubes was evaluated by measuring the specific energy absorption in quasi-static axial compression. Specific energy absorption was obtained from the load–displacement curve during testing. The failure mode of the tubes was analyzed from high resolution photographs obtained. Overall, the tube with 50 mm length and 30 layers showed the best crashworthiness among the tubes. The failure morphology showed that the specimens failed in two distinct modes: local and mid-length buckling. The triggered composite tubes exhibited progressive failure.  相似文献   

3.
采用仿真和试验相结合的方法探讨复合材料薄壁圆管在准静态轴向压缩载荷下的失效吸能特性和吸能机理。首先,建立复合材料薄壁圆管"层合壳"有限元模型,通过显式动力学方法求解其在准静态轴向载荷下的压溃失效力学行为。仿真与试验结果在圆管轴向压溃变形过程、初始峰值载荷、平均压溃载荷及比吸能等主要吸能参数上具有很好的一致性,验证了"层合壳"复合材料圆管有限元模型和建模方法的有效性。其次,采用解析模型与仿真分析方法分别对[0/90]3s、[0/90/02/902]s、[03/903]s三种不同铺层顺序的复合材料圆管的屈曲载荷与吸能特性进行了对比,进一步分析了铺层顺序对圆管失效吸能特性的影响。研究表明,0°与90°铺层交替程度对复合材料圆管的吸能特性影响较大,保证纤维失效方式在结构宏观失效中占主导地位能够提高材料失效吸收能量。  相似文献   

4.
This paper is devoted to examine the crushing behaviour of axially crushed composite corrugated tubes. Two types of composites were tested, namely, carbon fibre/epoxy in a filament form and glass fibre/epoxy in woven roving form. A series of experiments was conducted for tubes with corrugation angle (β) ranging from 10° to 40°. Typical failure histories of their failure mechanisms are presented and discussed. The results showed that the crushing behaviour of composite corrugated tube is found to be sensitive to the change in corrugation angle and fibre type. Carbon/epoxy tubes with corrugation angle of 40° displayed the highest specific energy absorption capability. It is also found that introducing of corrugation could significantly enhance the energy absorption capability of composite tubes in a uniform manner.  相似文献   

5.
The effect of Al closed-cell foam filling on the quasi-static crushing behavior of an E-glass woven fabric polyester composite tube and thin-walled Al/polyester composite hybrid tube was experimentally investigated. For comparison, empty Al, empty composite and empty hybrid tubes were also tested. Empty composite and empty hybrid tubes crushed predominantly in progressive crushing mode, without applying any triggering mechanism. Foam filling was found to be ineffective in increasing the crushing loads of the composite tubes over the sum of the crushing loads of empty composite tube and foam. However, foam filling stabilized the composite progressive crushing mode. In empty hybrid tubes, the deformation mode of the inner Al tube was found to be a more complex form of the diamond mode of deformation of empty Al tube, leading to higher crushing load values than the sum of the crushing load values of empty composite tube and empty metal tube. The foam filling of hybrid tubes however resulted in axial splitting of the outer composite tube due to the resistance imposed by the foam filler to Al tube inward folding and hence it was ineffective in increasing crushing load and SAE values over those of empty hybrid tubes.  相似文献   

6.
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.  相似文献   

7.
Composite body structures are now commonly used in road and rail vehicles, ships and submarines, aircraft and spacecraft due to their capability to effectively absorb high kinetic energy to weight ratio. One such structure designed as an energy device with pre-determined properties is a braided pultruded process (BPP) composite rod of either circular or square cross-section.

This paper reports the results of an investigation on circular BPP rods and unidirectional pultruded process rods in epoxy matrix subjected to compressive loading. Test results depict BPP rods to have superior properties in comparison to the unidirectional rods in terms of energy absorption capability that is manifested through well-defined progressive crushing failure mechanisms. Generally the rods' fracture and complete failure mechanisms show distinct creation of buckling zone, followed by generation of fronds as the wedge area increases with every augmentation of applied load. Fracture morphology related to overall performance characteristics is discussed through the step-by-step analysis of microphotography. The specific energy absorption property is shown to be best achieved in carbon/carbon (C/C) BPP followed by glass/carbon (G/C) rod combination and then the glass/glass (G/G) BPP rods. The latter (G/G), although worst performer of all the rods in terms of energy characteristics, still outperforms the documented best tubes made of Kevlar fibres, steel and aluminium. On average, the carbon/carbon (C/C) BPP rod's specific energy absorption is between 35% and 55% more than the nearest comparable tubes.  相似文献   


8.
This paper presents the quasi-static crushing performance of nine different geometrical shapes of small-scale glass/polyester composite tubes filled with polyurethane closed-cell foam for use in sacrificial cladding structures. The effect of polyurethane foam on the crushing characteristics and the corresponding energy absorption is addressed for each geometrical shape of the composite tube. Composite tubes with two different thicknesses (1 mm and 2 mm) have been considered to study the influence of polyurethane foam on the crushing performance. From the present study, it was found that the presence of polyurethane foam inside the composite tubes suppressed the circumferential delamination process and fibre fracturing; consequently, it reduced the specific energy absorption of composite tubes. Furthermore, the polyurethane foam attributed to a higher peak crush load for each composite tube. However, the presence of polyurethane foam inside the composite tubes significantly increased the stability of the crushing phenomena especially for the square and hexagonal cross-sectional composite tubes with 1 mm wall thickness. The results from this study are compared with our previous results for composite tubes without polyurethane foam [1].  相似文献   

9.
This study investigated the energy absorption response of triggered and non-triggered woven natural silk/epoxy composite rectangular tubes subjected to an axial quasi-static crushing test. The rectangular composite tubes were prepared by the hand lay-up technique using 12 layers of silk fabric with a thickness of 1.7 mm and tube lengths of 50, 80, and 120 mm. The parameters measured were peak load, energy absorption, and specific energy absorption (SEA). In both triggered and non-triggered tubes, the SEA values decreased with increasing length of the composite specimen. On the contrary, total energy absorption increased with increasing length of the composite specimen. The peak load in triggered specimens is nearly half of that in non-triggered specimens. Deformation morphology shows that the specimens failed in two distinct modes: local buckling and mid-length buckling. The non-triggered composite tubes exhibited catastrophic failure, whereas the triggered composite tubes only exhibited progressive failure.  相似文献   

10.
This paper presents the quasi-static crushing performance of nine different geometrical shapes of small-scale composite tubes. The idea is to understand the effect of geometry, dimension and triggering mechanism on the progressive deformation of small-scale composite tubes. Different geometrical shapes of the composite tubes have been manufactured by hand lay-up technique using uni-directional E-glass fabric (with single and double plies) and polyester resin. Dedicated quasi-static tests (144 tests) have been conducted for all nine geometrical shapes with different t/D (thickness–diameter) ratios and two triggering profiles (45° chamfering and tulip pattern with an included angle of 90°). From this unique study, it was found that the crushing characteristics and the corresponding energy absorption of the special geometrical shapes are better than the standard geometrical shapes such as square and hexagonal cross sections. Furthermore, the tulip triggering attributed to a lower peak crush load followed by a steady mean crush load compared to the 45° chamfering triggering profile which resulted into a higher energy absorption in most of the geometrical shapes of the composite tubes.  相似文献   

11.
In this study, empty and polyurethane-foam filled flax fabric reinforced epoxy composite tubes were longitudinally crushed under quasi-static compression. The effects of foam-filler (density of 160 kg/m3, two diameters of 64 and 86 mm), tube thickness (2, 4 and 6 plies of laminate), and triggering (45° edge chamfering) and the combination of triggering and foam-filler on the crushing characteristics and energy absorption capacity of these tubes were investigated. The test results indicate that the observed primary failure mode was progressive crushing for all the specimens. Foam-filled tubes have better crashworthiness than empty tubes in total absorbed energy, specific absorbed energy and crush force efficiency. The presence of triggering has no significant effect on total absorbed energy and specific absorbed energy of the empty tubes. However, the crush force efficiency of triggered tube is significantly larger compared to the non-triggered one. In addition, the triggering minimises the force variation of the tubes from the average crush force and in turn a more stable progressive crushing is achieved. The foam-filled and triggered tubes have better crashworthiness than the empty tubes in all the aspects. Compared with either triggered or foam-filled tubes, the triggered and foam-filled tubes have larger values in average crush load and crush force efficiency. In terms of total absorbed energy and specific absorbed energy, the triggered and foam-filled tubes have values always larger than those of the tubes with triggering only, but these values are either larger or smaller than the tubes with foam-filler only.  相似文献   

12.
The crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structural integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. Finally, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).  相似文献   

13.
In this study, the failure modes and energy absorption capabilities of different kinds of circular tubes made of carbon, Kevlar, and carbon-Kevlar hybrid fibers composites with epoxy resin have been evaluated. The relationship between the crushing parameters (specific energy absorption, maximum peak load, mean crushing load) and the material properties for different fibers and patterns was also investigated. The fabric carbon/epoxy tubes had the best energy absorption capability (specific energy absorption of 81.7%). In contrast, the tubes made of Kevlar showed the worst energy absorption capability. Based on the linear regression analysis results, the crushing parameters generally showed good correlation with the compressive strength and shear modulus. In particular, the specific energy absorption of the tubes with the brittle fracture mode revealed the strongest correlation with the compressive strength (R-square value = 0.90).  相似文献   

14.
The capability of structures to absorb large amounts of energy is a crucial factor, particularly for structural components of vehicles, in reducing injury in case of collision. In this study, an experimental investigation was conducted to study the crashworthiness of polymeric foam-filled structures to the pultruded square cross-section E-Glass fiber-reinforced polyester composite tube profiles. Quasi-static compression was applied axially to composite tubes to determine the response of the quasi-static load displacement curve during progressive damage. Three pultruded composite tube wall thicknesses at different sizes were examined, and the effects of crushing behavior and failure modes were analyzed and discussed. Experimental results indicated that the foam-filled profile is superior to the non-filled foam composite tube profile in terms of the capacity to absorb specific energy.  相似文献   

15.
Composite materials have been increasingly used in the automobile industry for weight saving and part integration purposes. In this regard, composite elliptical tubes have been effectively employed as energy absorber devices. This increases the need for accurate and simple prediction techniques to optimize these structures.

The present work deals with the implementation of artificial neural networks (ANN) technique in the prediction of the crushing behavior and energy absorption characteristics of laterally loaded glass fiber/epoxy composite elliptical tubes. Predicted results are compared with actual experimental data in terms of load carrying capacity and energy absorption capability showing good agreement. This shows that ANN techniques could effectively be used to predict the response of collapsible composite energy absorber devices subjected to different loading conditions. As is the case for experimental findings, the predictions obtained using ANN also show the significant effect of the ellipticity ratio on the crushing behavior of laterally loaded tubes.  相似文献   


16.
Numerical Study on Hybrid Tubes Subjected to Static and Dynamic Loading   总被引:1,自引:0,他引:1  
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The numerical simulation elucidated the crushing behaviors of these tubes under both quasi-static compression and axial dynamic impact loading. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The stress–strain curves under different strain rates were used to determine the dynamic impact of strain rate effects on the metal. The results were compared with those of a simplified analytical model and the mean crushing force thus predicted agreed closely with the numerical simulations. The numerical results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.  相似文献   

17.
通过控制缠绕线型改变轴管纤维角度,制备了一种轴向刚度渐变、压溃稳定的碳纤维增强树脂基复合材料(CFRP)变刚度薄壁圆管。对变刚度、[±45°]n以及[90°]n三类CFRP缠绕轴管进行轴向准静态压缩测试,结合数字图像相关技术(DIC)及有限元结果,对比三类结构压溃初始应变模式、损伤演化与应力状态结果,研究了变刚度结构的压溃响应与破坏机制。结果表明:不同纤维角度CFRP轴管因轴向刚度不同,压溃的初始破坏与损伤演化过程相异,三类结构产生不同的压溃响应与破坏模式。变刚度区连续变化的大角度纤维能有效地引发分层和“开花式”混合破坏,缓慢释放应变能,使变刚度CFRP轴管吸能效果明显优于其他两类结构。其峰值载荷为66.97 kN,压溃效率为50.8%,比吸能为10.1 kJ/kg,相对于[±45°]n结构比吸能提升156.35%,压溃效率提升518.76%,相对于[90°]n结构比吸能提升16.9%,压溃效率降低27.3%。   相似文献   

18.
The dynamic crush response of a low relative density, multilayered corrugated core is investigated by combining insights from experiments and 3D finite element simulations. The test structures have been fabricated from 304 stainless steel corrugations with 0°/90° lay-up orientation and bonded by means of a transient liquid phase method. Characterization of the dynamic crushing of these structures has revealed that at low rates, interlayer interactions induce a buckling-dominated soft response. This softness is diminished at high rates by inertial stabilization and the response of the structure transitions to yield-dominated behavior. Unidirectional dynamic crushing experiments conducted using a dynamic test facility reveal a soft response, consistent with lower rate crushing mechanisms. The 3D simulation predictions of crushing strain, pulse amplitude/duration and impulse delivery rate correspond closely with the measurements. The application of core homogenization schemes has revealed that by calibrating with a multilayer unit cell, high fidelity continuum level predictions are possible. Moreover, even simplified hardening curves based on equivalent energy absorption provide remarkably accurate predictions of the crush strains and the impulse transmitted through the core. The multilayered structures investigated here significantly reduced the transmitted pressures of an impulsive load.  相似文献   

19.
The collapse characteristics and energy absorption capability of composite tubes made of 759/5224 woven glass cloth/epoxy with different fiber orientations were studied in the present article under axial quasi-static and impact crushing condition. The effects of fiber orientation and loading condition on the crushing modes and energy absorption capability were discussed in detail. The fiber orientation could be found to have significant influences on energy absorption performance. Based on results, the energy absorption capability could be improved by selecting proper fiber orientation. The energy absorption capability in impact crushing tests could be found to be slightly lower than that in quasi-static crushing tests.  相似文献   

20.
In this research work, the artificial neural networks (ANN) technique is used in predicting the crushing behavior and energy absorption characteristics of axially-loaded glass fiber/epoxy composite elliptical tubes. Predictions are compared to actual experimental results obtained from the literature and are shown to be in good agreement. Effects of parameters such as network architecture, number of hidden layers and number of neurons per hidden layer are also considered. The study shows that ANN techniques can effectively be used to predict the crushing response and the energy absorption characteristics of elliptical composite tubes with various ellipticity ratios subjected to axial loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号