首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel polypropylene (PP) nanocomposite was fabricated by the incorporation of intumescent flame retardant (IFR), carbon nanotubes (CNTs) and graphene into the PP matrix. Results from TEM indicate that IFR, CNTs and exfoliated graphene nanosheets are dispersed finely in the PP matrix, which is supported by the XRD analysis results. Thermogravimetric (TGA) results show that the addition of IFR, CNTs and graphene improved the thermal stability and the char yields of PP. The PP/IFR/CNTs/RGO nanocomposites, filled with 18 wt% IFR, 1 wt% CNTs and 1 wt% graphene, achieve the limiting oxygen index value of 31.4% and UL-94 V0 grade. Cone calorimeter data reveal that combustion behavior, heat release rate peak (PHRR) and average specific extinction area (ASEA) of PP decrease substantially when combination effects of IFR, CNTs and graphene intervene. For the PP/IFR/CNTs/RGO nanocomposites, the PHRR exhibits an 83% reduction and the time of ignition is delayed 40 s compared with neat PP.  相似文献   

2.
The thermomechanical properties of epoxy filled with two different types of silica nanofillers: spherical nanoparticles and nanofibers were investigated as a function of silica nanofiller aspect ratio and concentration. Results indicated that at room temperature and at 8.74% silica nanofiber concentration (by volume) the thermal conductivity of epoxy increased twofold and coefficient of thermal expansion (CET) decreased by ∼40%. Silica nanofiber filled epoxy showed 1.4 times greater CET and 1.5 times greater thermal conductivity compared to spherical nanoparticle filled epoxy. The significant changes observed in thermomechanical properties of silica nanofiber filled epoxy were attributed to its high aspect ratio by constraining the polymer matrix as well as reducing the phonon scattering due to the formation of a continuous fiber network within the matrix. In addition to being electrically insulating, the improved properties of silica nanofiber filled epoxy make it an extremely attractive material as underfill and encapsulant in advanced electronic packaging industry.  相似文献   

3.
The graphene nanoribbon was prepared from the carbon nanotubes using the chemical approach, and was used for preparing the poly (vinyl alcohol) nanocomposites. It was discovered that the prepared graphene nanoribbon contained a lot of oxygen groups. Due to the presence of these oxygen groups, the nanoribbon could homogeneously disperse in both water and poly (vinly alcohol) matrix. It was also found that there were strong interactions between the graphene nanoribbon and the poly (vinyl alcohol) through hydrogen bonding. The interactions gave rise to the thermal stability of the host polymer. Furthermore, the presence of the nanofiller also resulted in a significant improvement of the mechanical performance of the prepared nanocomposites. The tensile strength and the Young’s modulus of the nanocomposite loaded with 2.0 wt% graphene nanoribbon increased by 85.7% and 65.2% respectively. The overall results indicate that the graphene nanoribbon is suitable for preparing high-performance polymer composites.  相似文献   

4.
Graphene nanoplatelet (GNP) was incorporated into poly(vinylidene fluoride) (PVDF) and PVDF/poly(methyl methacrylate) (PMMA) blend to achieve binary and ternary nanocomposites. GNP was more randomly dispersed in binary composites compared with ternary composites. GNP exhibited higher nucleation efficiency for PVDF crystallization in ternary composites than in binary composites. GNP addition induced PVDF crystals with higher stability; however, PMMA imparted opposite effect. The binary composite exhibited lower thermal expansion value than PVDF; the value further declined (up to 28.5% drop) in the ternary composites. The storage modulus of binary and ternary composites increased to 23.1% and 53.9% (at 25 °C), respectively, compared with PVDF. Electrical percolation threshold between 1 phr and 2 phr GNP loading was identified for the two composite systems; the ternary composites exhibited lower electrical resistivity at identical GNP loadings. Rheological data confirmed that the formation of GNP (pseudo)network structure was assisted in the ternary system.  相似文献   

5.
The polystyrene (PS) macromolecular chains were grafted on the surface of graphene layers by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this procedure, a RAFT agent, 4-Cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, was used to functionalize the thermal reduced graphene oxide (TRGO) to obtain the precursor (TRGO-RAFT). It can be calculated that the grafting density of PS/graphene (PRG) composites was about 0.18 chains per 100 carbons. Successful in-plain attachment of RAFT agent to TRGO and PS chain to TRGO-RAFT was shown an influence on the thermal property of the PRG composites. The thermal conductivity (λ) improved from 0.150 W m−1 K−1 of neat PS to 0.250 W m−1 K−1 of PRG composites with 10 wt% graphene sheets loading. The thermal property of PRG composites increased due to the homogeneous dispersion and ordered arrangement of graphene sheets in PS matrix and the formation of PRG composites.  相似文献   

6.
Thermoplastic elastomer tri-block copolymer, namely styrene–butadiene–styrene (SBS) composites filled with carbon nanotubes (CNT) are characterized with the main goal of obtaining electro-mechanical composites suitable for large deformation sensor applications. CNT/SBS composites with different filler contents and filler functionalizations are studied by morphological, thermal, mechanical and electrical analyses. It is shown that the different dispersion levels of CNT in the SBS matrix are achieved for pristine or functionalized CNT with strong influence in the electrical properties of the composites. In particular covalently functionalized CNTs show percolation thresholds higher than 8 weight percentage (wt%) whereas pristine CNT show percolation threshold smaller than 1 wt%. On the other hand, CNT functionalization does not alter the conduction mechanism which is related to hopping between the CNT for concentrations higher than the percolation threshold.Pristine single and multiwall CNT within the SBS matrix allow the preparation of composites with electro-mechanical properties appropriate for strain sensors for deformations up to 5% of strain, the gauge factor varying between 2 and 8. Composites close to the percolation threshold show larger values of the gauge factor.  相似文献   

7.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

8.
The thermal behavior of hemp-poly lactic acid composites with both untreated and chemically surface modified hemp fiber was characterized by means of activation energy of thermal degradation. Three chemical surface modification employed were; alkali, silane and acetic anhydride. Model-free isoconversion Flynn–Wall–Ozawa method was chosen to evaluate the activation energy of composites. The results indicated that composites prepared with acetic anhydride modified hemp had 10–13% higher activation energy compared to other composites. Further, among the three surface modifications, acetic anhydride resulted in higher activation energy (159–163 kJ/mol). Fourier transform infrared spectroscopy supported the findings of thermogravimetric analysis results, wherein surface functionalization changes were observed as a result of surface modification of hemp fiber. It was concluded that, higher bond energy results in higher activation energy, which improves thermal stability. The activation energy data can aid in better understanding of the thermal degradation behavior of composites as a function of composite processing.  相似文献   

9.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix.  相似文献   

10.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

11.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

12.
We investigated the electromagnetic interference shielding effectiveness (EMI SE) of composites consisting of an unsaturated polyester matrix containing woven glass or carbon fibers that had been coated with multiwalled carbon nanotubes (MWCNTs). Composite panels consisting of fiber fabrics with various combinations of fabric type and stacking sequence were fabricated. Their EMI SE was measured in the frequency range of 30 MHz–1.5 GHz. The underlying physics governing the EMI shielding mechanisms of the materials, namely, absorption, reflection, and multiple reflections, was investigated and used in analytical models to predict the EMI SE. Simulation and experimental results showed that the contributions of reflection and absorption to EMI shielding is enhanced by sufficient impedance mismatching, while multiple reflections have a negative effect. For a given amount of MWCNTs in the glass-fiber–reinforced composite, coating the outermost, instead of intermediate, glass fiber plies with MWCNTs was found to maximize the conductivity and SE.  相似文献   

13.
High performance poly(etherimide) (PEI)-based nanocomposites (PNs) with multi-walled carbon nanotubes (MWCNT) were obtained via melt mixing. To achieve this, PEI was mixed with a well-dispersed commercial poly(butylene terephthalate) (PBT)/MWCNT master-batch in an attempt to transfer the dispersed MWCNTs to a PEI matrix. A broad and homogeneous dispersion of MWCNTs throughout the PEI-based matrix was obtained. The electrical percolation threshold (pc) was reached at only 1 wt.% MWCNT. This pc showed a power law dependence of conductivity on filler concentration, with a critical exponent of 1.92, which indicates that a three dimensional percolated structure was achieved. The glass transition temperature and the pressure at the output end of the extruder decreased when the master-batch was added, indicating that the processability of PEI was improved. In addition to this, the modified PEI-based PNs presented ductile behaviour and an ameliorated (12% with 5 wt.% MWCNT) elastic modulus compared with pure PEI.  相似文献   

14.
Composites based on epoxy resin and differently aligned multi-walled carbon nanotube (MWCNT) sheets have been developed using hot-melt prepreg processing. Aligned MWCNT sheets were produced from MWCNT arrays using the drawing and winding technique. Wavy MWCNTs in the sheets have limited reinforcement efficiency in the composites. Therefore, mechanical stretching of the MWCNT sheets and their prepregs was conducted for this study. Mechanical stretching of the MWCNT sheets and hot stretching of the MWCNT/epoxy prepregs markedly improved the mechanical properties of the composites. The improved mechanical properties of stretched composites derived from the increased MWCNT volume fraction and the reduced MWCNT waviness caused by stretching. With a 3% stretch ratio, the MWCNT/epoxy composites achieved their best mechanical properties in this study. Although hot stretching of the prepregs increased the tensile strength and modulus of the composites considerably, its efficiency was lower than that of stretching the MWCNT sheets.  相似文献   

15.
Polypyrrole nanowire/silver nanoparticle composites (PPy/Ag) are obtained in aqueous media through a one-pot method without any external stimulus. PPy nanowires were assembled on the reactive self-degraded template of the complex of AgNO3 and methyl orange (MO). During the synthesis process in the dark surrounding, Ag nanoparticles could be uniformly decorated onto the surface of PPy nanowires in situ by the redox reaction of pyrrole and AgNO3. Neither additional reducing agents for the growth of silver nanoparticles nor oxidizing agents for the polymerization of pyrrole are utilized. The formation mechanism, morphologies, structural characteristics, and conductivity of the obtained PPy/Ag nanocomposites are reported. The as-prepared PPy/Ag nanocomposites exhibit well-defined response to the electrochemical reduction of hydrogen peroxide. Moreover, the preliminary antibacterial assays indicate that the PPy/Ag nanocomposites also possess antibacterial abilities against Escherichia coli.  相似文献   

16.
Three silane coupling agents with amino, long alkyl chain or vinyl functional groups were used to modify magnesia (MgO) nanoparticles. The modified nanoparticles were then mechanically mixed with low-density polyethylene (LDPE) to fabricate insulating nanocomposites. The average size of the modified MgO aggregates dispersed in LDPE matrix was below 100 nm. The pulsed electroacoustic method indicated that the MgO nanoparticles regardless of surface modification were effective to suppress the packet-like charge injection and accumulation in the LDPE sample, decrease the permittivity and tan δ, and also improved the direct-current breakdown strength of LDPE at different temperatures. The best insulating properties were found in the case of vinyl-silane-modified-MgO/LDPE samples probably owing to the improved interfacial adhesion. A multi-core model was used to discuss the results obtained.  相似文献   

17.
18.
Thermal and dielectric properties of polymers reinforced with micro-sized aluminium nitride (AlN) particles have been studied. A set of epoxy–AlN composites, with filler content ranging from 0 to 25 vol% is prepared by hand lay-up technique. With similar filler loading, polypropylene -AlN composites are fabricated by compression molding technique. Density (ρc), effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and dielectric constant (εc) of these composites are measured experimentally. The various experimental data were interpreted using appropriate theoretical models. Incorporation of AlN in both the resin increases the keff and Tg whereas CTE of composite decreases favourably. The dielectric constant of the composite also found to get modified with filler content. With improved thermal and modified dielectric characteristics, these AlN filled polymer composites can possibly be used for microelectronics applications.  相似文献   

19.
A new benzimidazolium derivative, the benzimidazolium-N,N′-hexadecane-2-hydroxy-ethyl bromide (Bz) featuring two geminal hexadecyl hydrophobic buttress has been synthesized and used for the functionalization of sodium montmorillonite (MMT-Na) via cationic exchange process. The resulting benzimidazolium-modified MMT (MMT-Bz) exhibits a large d-spacing of 3 nm between silicate layers and shows a high thermal stability compared to the commonly used clay modified alkyl ammonium salts (cloisite 20A and cloisite 20B). MMT-Bz was incorporated in high density polyethylene (HDPE) matrix via melt mixing method to produce HDPE/MMT-Bz nanocomposites. The microstructure and the morphology of these nanocomposites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The dispersion state of the organoclay within HDPE was monitored by UV–Vis spectroscopy and melt rheology. A more homogeneous dispersion or a greater content of the MMT-Bz in the matrix produced stronger solid-like and non-terminal behavior in the nanocomposites. Tensile properties and thermal stability were evaluated and discussed on the basis of the amount of clay incorporated within the nanocomposites. The intercalated structure in the nanocomposites, resulting from both the better dispersion/distribution of clay nano-platelets and their strong interaction with the polymer chains, provides the driving force to significantly enhance the HDPE properties.  相似文献   

20.
The electrical conductivity of graphene, multi-wall carbon nanotubes, carbon black nanopowders and graphite powder is characterized using paper-like films and by means of powder compression. The large difference in surface area of these materials results in different packing density and number of contact spots, influencing the macroscopic conductivity of the compacts during powder compression. The results are compared with the percolation threshold and final conductivity of polypropylene (PP) composites, using latex technology for the incorporation of the carbon fillers in the polymer. Even though the PP composites produced in this work exhibit percolation thresholds as low as 0.3 wt.%, the final conductivity for all the composites is below 1.5 S/m. Reasons why the high value of ∼103 S/m, which is obtained for graphene- and nanotube-based paper films or graphite compacts, is not reached for the composites are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号