首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene, which possesses unique nanostructure and excellent properties, is considered as a low cost alternative to carbon nanotubes in nanocomposites. In this study, we present a simple in situ approach for the deposition of cobalt (Co) nanoparticles onto surfaces of graphene sheets by hydrazine hydrate reduction. The as-synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM) and thermogravimetry and differential scanning calorimetry. It was shown that the as-formed Co nanoparticles were densely and homogeneously deposited on the surfaces of the graphene sheets and as a result, the restacking of the as-reduced graphene sheets was effectively inhibited. Magnetic studies reveal that the graphene/Co nanocomposite displays ferromagnetic behavior with saturation magnetizations of 53.4 emu g−1, remanent magnetization of 6.0 emu g−1 and coercivity of 226 Oe at room temperature, which make it promising for practical applications in future nanotechnology.  相似文献   

2.
Titanium carbide (TiC) particulates-reinforced iron matrix composites were prepared by in situ fabrication method combining an infiltration casting with a subsequent heat treatment. The effects of different heat treatment times (0, 1, 6 and 11 h) at 1138 °C on the phase evolution, microstructural features, and properties of the composites were investigated. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness and wear resistance tests. The XRD results showed that the composites consisted of graphite, α-iron and titanium carbide after heat treatment at 1138 °C for 11 h. The SEM observation revealed that the formed TiC particulates were homogenously distributed in the iron matrix. The average microhardness of the composite heat treated at 1138 °C for 6 h increased depending upon the region: 209 HV0.1 (iron matrix) < 787 HV0.1 (titanium wire) < 2667 HV0.1 (composite region). After being heat treated at 1138 °C for 11 h, the composite indicated no considerable change in microhardness value, and the average microhardness of the composite region was about 2354 HV0.1. The highest microhardness value obtained for the composite region was due to the formation of titanium carbide particulates as reinforcement phase within the iron matrix. Relative wear resistance was determined by a pin-on-disc wear test technique under different loads, and as a result, the composites containing higher volume fraction of hard titanium carbide particulates presented higher wear resistance compared with the unreinforced gray cast iron.  相似文献   

3.
We present a simple method to fabricate a uniform-sized graphene–metal–polymer composite microsphere of core–shell structure. On the surface of amine-functionalized polymer microsphere, graphene oxide (GO) sheets were affixed to give a core–shell structure by self-assembly process followed by the immobilization of platinum (Pt) ions to the assembled GO shell. Subsequently, they were chemically reduced in situ converting both GO and Pt ions to reduced GO (RGO) and Pt nanoparticles (NPs), respectively. As a result, a robust RGO-Pt composite shell, composed of RGO sheets and well-distributed Pt NPs, was fabricated on the microsphere surface. Meanwhile, the insulative GO shell was converted to the conductive RGO-Pt shell giving 24.0 S m?1 of electrical conductivity. We demonstrated that the electrical property of the shell was significantly improved by the incorporation of Pt NPs.  相似文献   

4.
Zhi Wang  Bin Wu  Huaihe Song 《Materials Letters》2008,62(20):3585-3587
Carbon nanotube/mesocarbon microbead composites have been synthesized from coal tar pitch with carbon nanotubes. How the carbon nanotubes affect the growth and the structure of mesocarbon microbeads are studied. The result shows that the size of beads decreases when more carbon nanotubes are added, and when the ratio of carbon nanotubes is set at 5%, we get the smallest sample with quite uniform shape. Carbon nanotubes exist both on the surface and inside of the samples and they will inhibit the growth and coalescence of these spheres. The addition of carbon nanotubes decreases the graphitization degree of the samples and makes their microtexture tend to be disordered.  相似文献   

5.
基于纳米压痕技术对碳纤维/环氧树脂复合材料各组分的原位硬度、 弹性模量和蠕变性能进行了测试, 实验得到了基体、 纤维和微小厚度界面层的力学性能。结果表明, 从环氧树脂基体到碳纤维过渡过程中, 硬度和弹性模量有明显的梯度变化, 并且纤维和树脂基体的原位弹性模量平均值与其非原位性能有一定的变化, 实验得到纤维的原位弹性模量有所下降, 环氧树脂的弹性模量有所增加。试件制备过程中的机械研磨对其表面产生的残余应力和复合后两种材料的相互影响是组分材料原位性能变化的主要原因。各组分的蠕变性能呈现出明显的差异。  相似文献   

6.
氧化石墨烯及其氧化铁复合物的原位合成   总被引:3,自引:1,他引:3  
开发了在富氧Fe(acac),络合物体系中膨化氧化石墨制取氧化石墨烯/Fe2O3复合物的一步法.应用FT-IR、XRD、VSM、AFM及低温直流电导测量法对所制氧化石墨/Fe2O3复合物进行表征.FT-IR研究结果显示:膨化后,氧化石墨的环氧基团分解,同时形成了氧化铁粒子与氧化石墨烯复合物.AFM测试表明:在较高Fe2O3含量下,氧化石墨烯片层结构剥蚀形成厚达5 mm氧化石墨烯叠层.VSM研究显示:在室温和0.13 emu/g~5.5 emu/g范围内,全部复合物呈铁磁特性.这些复合物的导电性受控于准电子跃迁机制.  相似文献   

7.
Low-temperature (~450 °C), scalable chemical vapor deposition of predominantly monolayer (74%) graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 μm(2) is demonstrated via the design of alloy catalysts. The admixture of Au to polycrystalline Ni allows a controlled decrease in graphene nucleation density, highlighting the role of step edges. In situ, time-, and depth-resolved X-ray photoelectron spectroscopy and X-ray diffraction reveal the role of subsurface C species and allow a coherent model for graphene formation to be devised.  相似文献   

8.
Journal of Materials Science: Materials in Electronics - In this article, spinel ferrite CoFe2O4 and multi-walled carbon nanotubes (MWCNTs) composites are constructed by a facile one-step...  相似文献   

9.
Magnesium matrix composites reinforced with 8 wt% TiC was in situ synthesized using remelting and dilution technique. X-ray diffraction analysis revealed the presence of TiC phase in sintered block and magnesium matrix composites. Uniform distribution of fine TiC particulates in matrix material was obtained through microstructure characterization. The results of damping characterization revealed that damping capacity of materials is independent of frequency, but dependent on strain and temperature. There were damping peak in damping–strain curve, which is due to the foul and tangle of dislocations. There were two damping peaks at damping–temperature curve under respective temperature of 130 °C and 240 °C. The former damping peak of magnesium matrix composites is due to dislocation motion, and the latter is due to interface and grain boundary sliding. Generally, damping capacity of magnesium matrix composites is higher than that of AZ91 magnesium alloy, which is due to the addition of TiC particulates.  相似文献   

10.
11.
Yan P  Qin D  An YK  Li GZ  Xing J  Liu JJ 《Nanotechnology》2008,19(2):025605
Herein we describe a thermal treatment route to synthesize gallium nitride (GaN) nanorods. In this method, GaN nanorods were synthesized by thermal treatment of GaN films at a temperature of 800?°C. The morphology and structure of GaN nanorods were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that GaN nanorods have a hexagonal wurtzite structure with diameters ranging from 30 to 50?nm. Additionally, GaN nanoplates are also founded in the products. The growth process of GaN nanostructures was investigated and a thermal decomposition mechanism was proposed. Our method provides a cost-effective route to fabricate GaN nanorods, which will benefit the fabrication of one-dimensional nanomaterials and device applications.  相似文献   

12.
采用液相还原的方法,在碱性环境下使用FeCl2.4H2O和氧化石墨作为前驱体,制备Fe3O4微球附载的石墨烯复合材料。通过调节氧化石墨和铁盐的质量比制备得到不同组分的Fe3O4/石墨烯复合粉体。使用场发射电子扫描显微镜(FESEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)和四探针电阻仪等仪器分析了产物的形貌、物相、磁性能和导电性能。结果表明Fe3O4/石墨烯复合粉体中Fe3O4微球在石墨烯表面分散均匀,且Fe3O4结晶良好,为立方晶系的尖晶石型。该复合粉体具有高的磁性能和良好的导电性能,饱和磁化强度和电导率分别达到72emu/g和0.53S/cm。  相似文献   

13.
Lu Y  Merchant CA  Drndić M  Johnson AT 《Nano letters》2011,11(12):5184-5188
We report electronic measurements on high-quality graphene nanoconstrictions (GNCs) fabricated in a transmission electron microscope (TEM), and the first measurements on GNC conductance with an accurate measurement of constriction width down to 1 nm. To create the GNCs, freely suspended graphene ribbons were fabricated using few-layer graphene grown by chemical vapor deposition. The ribbons were loaded into the TEM, and a current-annealing procedure was used to clean the material and improve its electronic characteristics. The TEM beam was then used to sculpt GNCs to a series of desired widths in the range 1-700 nm; after each sculpting step, the sample was imaged by TEM and its electronic properties were measured in situ. GNC conductance was found to be remarkably high, comparable to that of exfoliated graphene samples of similar size. The GNC conductance varied with width approximately as G(w)=(e2/h)w0.75, where w is the constriction width in nanometers. GNCs support current densities greater than 120 μA/nm2, 2 orders of magnitude higher than that which has been previously reported for graphene nanoribbons and 2000 times higher than that reported for copper.  相似文献   

14.
电磁污染已成为继空气污染、水污染和噪声污染之后的第四大污染, 吸波材料因其吸收和衰减特性, 可以作为解决电磁污染的有效手段。聚苯胺(PANI)作为一种电阻损耗型吸波材料, 可以满足吸波材料"厚度薄"、"质量轻"的发展理念, 但由于阻抗匹配度差, 吸波性能并不理想。铁氧体作为一类传统的磁损耗型吸波材料, 因其密度较高使其适用范围受到限制。高密度的铁氧体与低密度的聚苯胺复合制备的吸波材料, 不仅可以调整复合材料的密度, 而且还能改善复合材料的阻抗匹配, 提高铁氧体/聚苯胺复合材料的吸波性能。本文首先探讨了聚苯胺以及铁氧体/聚苯胺复合材料的制备方法, 其次阐述了铁氧体/聚苯胺复合材料的吸波机理。然后分别归纳了尖晶石型、磁铅石型、石榴石型铁氧体与聚苯胺制备的复合材料在吸波领域的研究进展。最后指出铁氧体/聚苯胺复合材料应趋向于电磁仿真和多元复合化的方向发展。  相似文献   

15.
Rao FB  Almumen H  Fan Z  Li W  Dong LX 《Nanotechnology》2012,23(10):105501
With their sub-nanometer inter-sheet spacing, few-layer graphenes (FLGs) are alignment-free building blocks for nanosensors based on the inter-sheet effects. In this paper, we have tackled the challenges towards batch fabrication of inter-sheet graphene sensors through controlled layer engineering, edge tailoring and selective electrode fabrication on different atomic layers. An oxygen plasma etching (OPE) technique is developed to remove graphene layer by layer, enabling the batch fabrication of FLGs in a controllable fashion because of the faster speed and readiness of patterning of this process as compared to the conventional mechanical exfoliation. Vapor sensing experiments have shown that 'inter-sheet' sensors possess a higher sensitivity than conventional 'intra-sheet' ones. Vapor sensitivity is improved more than two times in normalized resistance changes by taking the 'inter-sheet' design upon exposure to 0.5% ethanol-nitrogen mixture and 500 Pa water vapor environments, respectively. These remarkable improvements can mainly be attributed to the inter-sheet effects such as electron tunneling, chemical doping, physical insertion and enhanced edge effects. Such effects may result from molecule adsorption/desorption, force/displacement, pressure, surface tension or thermal energy, and can potentially remarkably enrich the applicable transduction mechanisms.  相似文献   

16.
By adding carbon nanotubes (CNTs) into medium temperature coal tar pitch, mesocarbon microbeads (MCMBs) were obtained via thermal condensation, then CNTs/MCMBs composites were in situ prepared using compression molding. The morphology, structure and mechanical properties of CNTs/MCMBs composites were characterized by optical microscope, digital camera, scanning electron microscope (SEM) and mechanical test machine. Results showed that CNTs were used as the nucleating agent and could inhibit the growth and coalescence of MCMBs. The optical textures of CNTs/MCMBs composites showed similar characteristics to the thermal condensation products from coal tar pitch with CNTs. The mass ratio of CNTs to coal tar pitch played an important role in the mechanical properties of CNTs/MCMBs composites. The density and bending strength of CNTs/MCMBs composite first increased and then decreased with the increase of the proportion of CNTs. When the proportion of CNTs was 5 wt%, the density of the composite reached the maximum (1.76 g/cm3). In addition, the bending strength of the composite reached the maximum (79.6 MPa) as adding 2 wt% CNTs into coal tar pitch.  相似文献   

17.
《Materials Letters》2005,59(8-9):1056-1060
Magnetic nanoparticles of Co-ferrite were prepared by the polymerized complex method. Heating in vacuum of a precursor solution containing citric acid (CA), ethylene glycol (EG) and cobalt and iron salts with a molar ratio of Co/Fe/CA/EG=1/2/9/22.5 at 130 °C produced a brownish transparent polymeric gel, which have been characterized by IR and NMR spectroscopy. The results of both techniques suggest two types of reactions: the formation of metal-CA complexes and successive esterification reactions between CA and EG. The organic fraction was removed by controlled thermal treatments (200–800 °C) whereby the bimetallic oxide was formed. The powders obtained were characterized by X-ray diffraction (XRD), vibrational sample magnetometry (VSM) and transmission electron microscopy (TEM). XRD analysis showed the presence of CoFe2O4 at 400 °C. The saturation magnetization values of the samples increased as a function of calcination temperature and reached a maximum of 79.8 emu/g at 800 °C. The TEM images showed spherical nanoparticles with sizes between 20 and 40 nm.  相似文献   

18.
Lin  Tengfei  Yu  Haojie  Wang  Yun  Wang  Li  Vatsadze  Sergey Z.  Liu  Xiaowei  Huang  Zhikun  Ren  Shuning  Uddin  Md Alim  Amin  Bilal Ul  Fahad  Shah 《Journal of Materials Science》2021,56(32):18093-18115

Polypyrrole nanotube/ferrocene-modified graphene oxide composites (PNT/GO-Fc, PNT/GO-Fc-GO, PNT/GO-EDA-Fc and PNT/GO-EDA-Fc-EDA-GO) were fabricated via in situ chemical oxidative polymerization. The prepared composites were characterized by FTIR, XRD, XPS, Raman, TGA, SEM, TEM and EDS. The electromagnetic interference shielding performance of the prepared composites was evaluated by a coaxial method within the frequency range of 1.0–4.5 GHz. The results demonstrated that the composite of PNT/GO-EDA-Fc-EDA-GO-7:1 exhibited the best electromagnetic interference shielding property with 28.73 dB (at the frequency of 1.0175 GHz with the thickness of 3.0 mm) of total shielding effectiveness by adding 50 wt% of the composite in the paraffin matrix. And the composite of PNT/GO-EDA-Fc-EDA-GO-7:1 exhibited good conductivity with a value of 1.320 S/cm. The relationship between the conductivities of prepared samples and the EMI shielding performance was investigated.

  相似文献   

19.
20.
Cao X  Gu L 《Nanotechnology》2005,16(2):180-185
In this paper we describe the preparation of homogeneously needle-shaped cobalt ferrite (CoFe(2)O(4)) nanocrystals on a large scale through the smooth decomposition of urea and the resulting co-precipitation of Co(2+) and Fe(3+) in oleic acid micelles. Furthermore, we found that other ferrite nanocrystals with a needle-like shape, such as zinc ferrite (ZnFe(2)O(4)) and nickel ferrite (NiFe(2)O(4)), can be prepared by the same process. Needle-shaped CoFe(2)O(4) nanocrystals dispersed in an aqueous solution containing oleic acid exhibit excellent stability and the formed colloid does not produce any precipitations after two months, which is of prime importance if these materials are applied in magnetic fluids. X-ray diffraction (XRD) measurements were used to characterize the phase and component of the co-precipitation products, and demonstrate that they are spinel ferrite with a cubic symmetry. Transmission electron microscopy (TEM) observation showed that all the nanocrystals present a needle-like shape with a 22?nm short axis and an aspect ratio of around?6. Varying the concentration of oleic acid did not bring about any obvious influence on the size distribution and shapes of CoFe(2)O(4). The magnetic properties of the needle-shaped CoFe(2)O(4) nanocrystals were evaluated by using a vibrating sample magnetometer (VSM), electron paramagnetic resonance (EPR), and a M?ssbauer spectrometer, and the results all demonstrated that CoFe(2)O(4) nanocrystals were superparamagnetic at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号