首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Sandwich panels with Kagome lattice cores reinforced by carbon fibers   总被引:2,自引:0,他引:2  
Stretching dominated Kagome lattices reinforced by carbon fibers were designed and manufactured. The sandwich panels were assembled with bonded laminate skins. The mechanical behaviors of the sandwich panels were tested by out-of-plane compression, in-plane compression and three-point bending. Different failure modes of the sandwich structures were revealed. The experimental results showed that the carbon fiber reinforced lattice grids are much stiffer and stronger than foams and honeycombs. It was found that buckling and debonding dominate the mechanical behavior of the sandwich structures, and that more complaint skin sheets might further improve the overall mechanical performance of the sandwich panels.  相似文献   

2.
Filament winding and twice co-curing processes were proposed to make a carbon fiber reinforced composite (CFRC) sandwich cylinder with Kagome cores. Axial compression was carried out to reveal the stiffness and load capacity of the fabricated sandwich cylinder. Compared with the stiffened cylinder with similar dimensions and mass, the sandwich cylinder is shown to be stiffer and stronger by several times. Restrained by the double skins, the buckling of lattice ribs is effectively suppressed, leading to the elimination of the dominant failure mode. Skin crippling and strength failure were observed in the testing to be the competing failure mechanisms of the lattice sandwich cylinder. The prediction based on the weakest link of these mechanisms only overestimates the testing load capacity by 30%. The novel sandwich structure shows the promise of lattice composites in upgrading the mechanical properties.  相似文献   

3.
《工程(英文)》2020,6(2):196-204
In this research, two novel folded lattice-core sandwich cylinders were designed, manufactured, and tested. The lattice core has periodic zigzag corrugations, whose ridges and valleys are directed axially or circumferentially. Free vibration and axial compression experiments were performed to reveal the fundamental frequency, free vibration modes, bearing capacity, and failure mode of the cylinder. A folded lattice core effectively restricts local buckling by reducing the dimension of the local skin periodic cell, and improves the global buckling resistance by enhancing the shear stiffness of the sandwich core. The cylinders fail at the mode of material failure and possess excellent load-carrying capacity. An axially directed folded sandwich cylinder has greater load-carrying capacity, while a circumferentially directed folded sandwich cylinder has higher fundamental frequencies. These two types of folded lattices provide a selection for engineers when designing a sandwich cylinder requiring strength or vibration. This research also presents a feasible way to fabricate a large-dimensional folded structure and promote its engineering application.  相似文献   

4.
A new type of lightweight sandwich panels consisting of vertically aligned hollow Al–Si alloy tubes as core construction and carbon fiber composite face sheets was designed. The hollow Al–Si alloy tubes were fabricated using precision casting and were bonded to the face sheets using an epoxy adhesive. The out-of-plane compression (i.e. core crushing), in-plane compression, and three-point bending response of the panels were tested until failure. The hollow Ai–Si alloy tubes core configuration show superior specific strength under crushing compared to common metallic and stochastic foam cores. Under in-plane compression and three-point bending, the buckling of face sheets and debonding of hollow cores from the face sheets were observed. Simple analytical relationships based on the concepts of mechanics of materials were provided for the compression tests, which estimate the sandwich panels’ strength with high fidelity. For three-point bending, detailed finite element analysis was used to model the response and initial failure of the sandwich panels.  相似文献   

5.
Glass fibers were firstly woven to form three-dimensional (3D) woven lattice sandwich fabrics (WLSFs) which then were applied to reinforce cementitious foams and mortars to fabricate novel ductile cementitious composites. Failure behaviors of WLSF reinforced cementitious composite structures were studied through compression and three-point bending experiments. The WLSF greatly enhances the strength of cementitious foams at a level of four times. For cementitious mortars, compression strength of WLSF reinforced blocks is a little greater for the fraction of the textile is small as well as the compression strength of the textile pillars is not strong. But in flexure, excellent stretching ability of the glass fiber textiles greatly improves the flexural behavior of WLSF reinforced cementitious composite panels. Load capacity and ultimate deflection of these composite panels were greatly enhanced. Flexural capacity of the WLSF reinforced beam is four times greater. Reinforced by WLSF, failure of the cementitious composite is ductile.  相似文献   

6.
The application of biofiber based paper-reinforced polymer (PRP) composites as skin materials for light-weight sandwich panel constructions was explored. Various sandwich panels with PRP composite skins and a commercial resin-impregnated aramid paper honeycomb core of different cell sizes and core heights were fabricated in the laboratory. The effects of honeycomb core height and cell size on the flexural properties of the lab-made sandwich panels were evaluated. The flexural moduli and strengths of the lab-made panels were compared to the reported values for three existing commercial products used for automotive load floor applications. The lab-made PRP composite/honeycomb core sandwich panels had comparable bending rigidity and flexural load bearing capability but lower areal weights when compared to the commercial products suggesting that PRP composites have the potential to be used as an alternative to glass fiber-reinforced polymer composites as skin materials in sandwich panel fabrication.  相似文献   

7.
The response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect.  相似文献   

8.
This paper addresses the effect of a local quasi-static indentation or a low-velocity impact on the residual strength of foam core sandwich panels subjected to edgewise compression. The damage is characterized by a local zone of crushed core accompanied by a residual dent in the face sheet. Experimental studies show that such damage can significantly alter the compressive strength. Theoretical analysis of the face sheet local bending is performed for two typical damage modes (with or without a face–core debonding). The solutions allow estimation of the onset of (a) an unstable dent growth (local buckling) or (b) a compressive failure in the face sheet. The theoretical results are in agreement with the test data for two considered sandwich configurations.  相似文献   

9.
《Composites Part A》2007,38(2):576-589
Compression wrinkling of composite sandwich panels with corrugated skins was investigated numerically, analytically and experimentally. Semi-circular and sine-wave shaped corrugations were studied. The corrugations significantly increased wrinkling strength when compared with equal mass flat panels. Semi-circular corrugations proved to be highly preferable to sine-wave shaped corrugations due to localized buckling in the latter. Over 40 fiberglass and foam core sandwich specimens were manufactured with semi-circular skin corrugations. These specimens were tested to failure, providing confirmation of the numerical and analytical results.  相似文献   

10.
Abstract

Failures of honeycomb sandwich plates are analyzed using experiments and three-dimensional (3D) finite element simulations to understand the failure mechanism. Meanwhile, correlations of the critical load and various physical parameters (e.g., height and thickness of the core) are investigated. The results demonstrated that the core height and skin thickness have significant effects on the compressed load buckling of the honeycomb sandwich plates, the core density is a sub-critical sensitive factor, while wall thickness and spacing of the cell, and the sandwich modulus have negligible effects. Cracking on the adhesive surface is the dominant factor to reduce the buckling critical load of the laminated plate, which leads to failures of sandwich plates. The ultimate failure of the sandwich panel is attributed to severe deformations that lead to local cracking of the entire cemented adhesive surface. Due to the bonding of the adhesive surface defects, the actual loads related to the core height are large enough to cause compressions with local buckling. Hence, the actual loads cannot reflect the performance of the sandwich panels. It is recommended to use panels with appropriate thicknesses below the sandwich and moderate grid density in the design.  相似文献   

11.
The post failure behaviour of sandwich panels loaded in in-plane compression is studied by considering the structural response of such panels with symmetrically located edge debonds. A parametric finite element model is used to determine the influence of different material and geometrical properties on the failure progression, i.e. after initiation of damage. The investigated failure modes are buckling of the debonded face sheets, debond propagation and face sheet failure. The postbuckling failure mode is mainly determined by the fracture toughness of the core and the bending stiffness and strength of the face sheets. The presented approach and results can be used to determine how sandwich panels should be constituted, or not, to promote damage progression favourable for efficient energy absorption during in-plane crushing. The prolonged damage propagation is very complex as it is strongly non-linear and depends on a combination of stiffness, strength and geometry of the constituent materials.  相似文献   

12.
This paper is concerned with the buckling of thick sandwich panels with orthotropic elastic face sheets bonded to a linear elastic orthotropic core. When such panels are analyzed for axial load carrying capacity, it is now commonplace to adopt the finite element method to carry out computations. The accuracy of the numerical results will depend not only on roundoff and algorithmic errors, but additionally on the approximations made in computing the incremental (second order) work associated in computing the change of configuration from the unbuckled to the buckled state. Here we show that, particularly for orthotropic thick sandwich structures, large errors can be incurred in computing buckling loads with available commercial software, unless the proper work conjugate measures of stress and strain with their stress-dependent tangential moduli are used in the buckling formulation.  相似文献   

13.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

14.
陶杰  李峰  邵飞 《复合材料学报》2018,35(5):1123-1130
为解决复合材料泡沫夹芯结构面板局部屈曲与面芯脱粘的突出问题,提出了一种由筋条增强的玻璃纤维增强树脂基复合材料(GFRP)面板与泡沫芯层组合而成的新型夹芯结构。采用真空辅助树脂导入技术制备试验件,通过面内压缩与双悬臂梁试验,对比分析了加筋增强夹芯板与未加筋夹芯板的受力特性、失效模式和面芯粘结性能。面内压缩试验显示,与未加筋夹芯板相比,加筋增强夹芯板的失效模式由面板局部屈曲转化为面板压缩剪切破坏或整体屈曲,在GFRP材料使用量相同的情况下,试件长度为130 mm的加筋增强夹芯板平均失效荷载提高了40.87%,长度为190 mm试件提高了35.63%。双悬臂梁试验显示,加筋增强夹芯板的裂缝在发展过程中受到筋条与面板之间纤维丝搭接约束,改善了界面粘结性能,与未加筋夹芯板相比,其平均能量释放率提高了57.35%。  相似文献   

15.
Composite sandwich structures with lattice truss cores are attracting more and more attention due to their superior specific strength/stiffness and multi-functional applications. In the present study, the carbon fiber reinforced polymer (CFRP) composite sandwich panels with 2-D lattice truss core are manufactured based on the hot-pressing method using unidirectional carbon/epoxy prepregs. The facesheets are interconnected with lattice truss members by means of that both ends of the lattice truss members are embedded into the facesheets, without the bonding procedure commonly adopted by sandwich panels. The mechanical properties of the 2-D lattice truss sandwich panels are investigated under out-of-plane compression, shear and three-point bending tests. Delamination of the facesheets is observed in shear and bending tests while node failure mode does not occur. The tests demonstrate that delamination of the facesheet is the primary failure mode of this sandwich structure other than the debonding between the facesheets and core for conventional sandwiches.  相似文献   

16.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

17.
A series of experimental investigations and numerical analyses is presented into the compression response, and subsequent failure modes in corrugated-core sandwich panels based on an aluminium alloy, a glass fibre reinforced plastic (GFRP) and a carbon fibre reinforced plastic (CFRP). The corrugated-cores were fabricated using a hot press moulding technique and then bonded to face sheets based on the same material, to produce a range of lightweight sandwich panels. The role of the number of unit cells and the thickness of the cell walls in determining the overall deformation and local collapse behaviour of the panels is investigated. The experiments also provide an insight into the post-failure response of the sandwich panels. The results are compared with the numerical predictions offered by a finite element analysis (FEA) as well as those associated with an analytical model. Buckling of the cell walls has been found to be initial failure mode in these corrugated systems. Continued loading resulted in fracture of the cell walls, localised delamination as well as debonding between the skins and the core. The predictions of the FEA generally show reasonably good agreement with the experimental measurements. Finally, the specific compressive properties of the corrugated structures have been compared to those of other core materials where evidence suggests that these systems compare favourably with their more conventional counterparts.  相似文献   

18.
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Rayleigh-Ritz minium energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along the unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has a much higher buckling strength than one having monolithic face sheets.  相似文献   

19.
Sandwich panel construction with carbon fiber-reinforced pyramidal lattice truss is attracting more and more attention due to its superior mechanical properties and multi-functional applications. Pyramidal lattice truss sandwich panels made from carbon fiber reinforced composites materials are manufactured by hot-pressing. The facesheets are interconnected with truss cores, the facesheets and truss cores are manufactured in one manufacturing process without bonding. The buckling and splitting of truss member is observed in the compressive and shear tests and no nodal failure is observed. The predicted results show that the mechanical behavior of the pyramidal lattice truss core sandwich panels depends on the relative density of core and the material properties of truss members.  相似文献   

20.
Failure mode maps for honeycomb sandwich panels   总被引:2,自引:0,他引:2  
Failure modes for sandwich beams of GFRP laminate skins and Nomex honeycomb core are investigated. Theoretical models using honeycomb mechanics and classical beam theory are described. A failure mode map for loading under 3-point bending is constructed, showing the dependence of failure mode and load on the ratio of skin thickness to span length and honeycomb relative density. Beam specimens are tested in 3-point bending. The experimental data agree satisfactorily with the theoretical predictions. The effect of honeycomb direction is also examined. The concept of a failure mode map is extended to give a useful design tool for sandwich panels manufacturers and their customers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号