首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
董方  郄俊懋  辛瑞峰 《热加工工艺》2014,(16):96-98,101
采用Gleeble-1500D热模拟机,测试了700~1400℃时304不锈钢的高温强度及塑性随温度的变化规律,确定了该钢种的零强度温度(ZST)与零塑性温度(ZDT)。结果表明:304不锈钢的ZST为1370℃,ZDT为1350℃左右;高温屈服强度及抗拉强度随温度的升高而降低,1250℃之后屈服强度及抗拉强度都降低至25MPa以下,强度变差;第一脆性区的温度为1250℃到熔点,第三脆性区的温度为950~1050℃,在1050~1200℃内断面收缩率均在65%以上,塑性较好。  相似文献   

2.
利用Gleeble-1500热模拟试验机对GCr 15模具钢连铸坯进行高温拉伸试验,研究了不同温度条件下GCr15模具钢连铸坯的力学性能;分析了抗拉强度和断面收缩率随温度的变化情况;利用SEM观察试样的断口形貌.结果表明,GCr15模具钢良好的塑性区在800~1200℃,第一脆性区在1200~1350℃,第三脆性区在800℃以下,零塑性温度为1300℃,零强度温度在1400℃以上.防氧化剂能提高GCr 15的高温力学性能,经双细化处理并且涂有防氧化剂的GCr15钢,其伸长率达324.5%.  相似文献   

3.
利用Gleeble-1500热模拟试验机对2205双相不锈钢连铸坯进行高温拉伸试验;分析了抗拉强度和断面收缩率随温度的变化情况;利用扫描电镜观察了试样的断口形貌。结果表明,测得该试样在750~1421℃存在3个脆性温度区;双相不锈钢连铸坯在第Ⅲ脆性温度区脆化主要是因为在晶界上的存在TiN类细小析出物,而第Ⅱ脆性区的脆化主要是由于枝晶间存在显微疏松和偏析。  相似文献   

4.
采用Gleeble-1500D热/力模拟试验机对Q235B连铸坯高温力学性能进行了测试。测试了试验温度为950℃,应变速率分别为1×10-3、5×10-3、1×10-2、5×10-2s-1时Q235B钢连铸坯的高温力学性能,以及应变速率为5×10-3s-1的条件下,测试温度在700~1000℃时Q235B钢连铸坯的高温力学性能。结果表明:Q235B钢连铸坯的高温抗拉强度和屈服强度随应变速率的升高而增大,而断面收缩率随着应变速率的升高则降低;应变速率对Q235B钢连铸坯高温强度的影响分为敏感区和不敏感区,温度为950℃时,临界应变速率ε觶c为1×10-2s-1;随温度升高,Q235B钢连铸坯的高温抗拉强度和屈服强度均降低,Q235B钢连铸坯的断面收缩率Z随温度的升高总呈上升趋势;在850~950℃内出现了脆化区,在900℃左右时,Z值为58%;温度对硬化指数n的影响较为复杂,硬化指数n随应变速率的增大而降低。  相似文献   

5.
通过Gleeble-3500热模拟试验机研究了不同应变速率下V-N微合金化Q420B钢连铸坯的高温热塑性,利用扫描电镜观察高塑性区和第Ⅲ脆性温度区拉伸试样的断口形貌及断口处组织形貌,分析了试验钢在高温下的强度和塑性随温度变化的关系,动态再结晶、相变和析出物对高温热塑性的影响。结果表明:在应变速率为ε觶=5×10-3/s时,存在第Ⅲ脆性区(700~900℃),在1000℃时断面收缩率(RA)达到最大值92.16%;当应变速率为ε觶=5×10-2/s时,存在第Ⅲ脆性区(600~862℃),在1100℃时RA达到最大值90.39%;当应变速率为ε觶=5×10-1/s时,不存在塑性凹槽;3个应变速率下均没有出现第Ⅱ脆性区;在第Ⅲ脆性区,随着应变速率的增大,断面收缩率提高;在1000~1200℃出现高塑性的主要原因是发生了动态再结晶;第Ⅲ脆性区塑性低主要是由于晶界处有析出物和夹杂物,同时也是由于沿奥氏体晶界析出的铁素体抗拉强度低。  相似文献   

6.
采用Gleeble-3500热/力模拟试验机测定了新开发的纳米析出高强度钢在1 300~600℃的力学性能。结果表明:随拉伸温度降低,试验钢的抗拉强度逐渐升高,在1 000~750℃之间拉伸时,断面收缩率出现低谷,1 000℃时塑性仍很低,此温度区间即为该钢的第三脆性区,750℃时的断面收缩率最低,而在1 100~1 250℃之间钢的塑性良好。金相显微组织观察和扫描电镜观察发现,钢的第三脆性区拉伸试样断面呈现沿晶断口特征,以脆性断裂为主,表明纳米析出高强度钢的高温强度高,钢的塑性低谷的温度范围宽,易在连铸连轧生产过程中产生裂纹等缺陷,给实际生产工艺带来困难,需要注意制造工艺设计。  相似文献   

7.
于正禄 《轧钢》2007,24(1):45-48
针对V微合金化高强异型钢在轧制过程中易出现翼缘裂边的情况,采用Gleeble 3800热模拟试验机对V质量分数为0.060%~0.080%的连铸坯试样在应变速率为1×10-3 s-1的试验条件下进行了700~950 ℃高温拉伸试验。通过对高温拉伸试样断口形貌、断面收缩率、抗拉强度及应力-应变曲线等的分析,得出试验钢的第III脆性温度区为750~875 ℃,不同变形温度下应力-应变曲线均表现为动态回复,并且随着变形温度的升高,曲线向下向左移动,最大应力对应的应变逐渐降低。因此,连铸生产时应优化配水模型,连铸坯入矫直机温度为900~950 ℃,以保证铸坯良好的表面质量。  相似文献   

8.
采用Gleeble-3800热模拟试验机对22MnB5热成形钢连铸坯在600~1300℃温度范围内的高温力学性能进行了测试,借助扫描电镜观察了高温拉伸后的断口形貌。系统分析了形变温度对应力-应变曲线、高温强度及热塑性的影响。结果表明,22MnB5热成形钢连铸坯的高温拉伸过程是形变强化和动态软化共同作用的结果,高温强度随形变温度的升高而下降。22MnB5热成形钢连铸坯的第1脆性区在1250℃至熔点范围内,为S和P元素在枝晶间偏析导致晶界熔融所致。第3脆性区在650~750℃范围内,为奥氏体晶界BN析出和奥氏体→铁素体相变所致,加入Ti可使第3脆性区变窄且趋向较低温度区。在800~1200℃温度范围内22MnB5热成形钢连铸坯塑性良好,可为此类钢的连铸工艺制定提供参考,以减少铸坯裂纹缺陷的产生。  相似文献   

9.
通过用Gleeble-3500热机械模拟试验机对化学成分(质量分数,%)为:C 0.07,Si 0.05,Mn 1.8,Al 0.03,Ti 0.02,Cu 0.3,Cr 0.5,Nb 0.015,Ni 0.17的A钢的高温力学性能展开研究,以0.001s-1应变速率,在温度范围650 ~1 350 ℃之间做一组高温拉伸试验,测得抗拉强度和断面收缩率.结果表明:A钢整体呈现较好的塑性,塑性低谷区温度范围较小.在775~1 250℃之间,断面收缩率均高于70%,塑性良好,第Ⅲ脆性区在650~775℃之间,A钢在700~750℃存在明显的塑性低谷.第Ⅲ脆性区断裂主要为沿晶脆性断裂,这主要是由于铁素体沿奥氏体晶界析出所致.实际连铸生产过程中可以避开此脆性区间,矫直温度尽量高于800℃.  相似文献   

10.
针对V微合金化高强异型钢在轧制过程中易出现翼缘裂边的情况,采用Gleeble 3800热模拟试验机对V质量分数为0.060%~0.080%的连铸坯试样在应变速率为1×10-3 s-1的试验条件下进行了700~950 ℃高温拉伸试验。通过对高温拉伸试样断口形貌、断面收缩率、抗拉强度及应力-应变曲线等的分析,得出试验钢的第III脆性温度区为750~875 ℃,不同变形温度下应力-应变曲线均表现为动态回复,并且随着变形温度的升高,曲线向下向左移动,最大应力对应的应变逐渐降低。因此,连铸生产时应优化配水模型,连铸坯入矫直机温度为900~950 ℃,以保证铸坯良好的表面质量。  相似文献   

11.
采用Gleeble-2000热模拟试验机对无磁钻铤用0Cr19Mn21Ni2N高氮奥氏体不锈钢进行高温拉伸试验,用扫描电镜和能谱仪对拉伸试样断口及断口附近的组织进行分析,用Thermo-Calc软件计算试验钢的相变及析出相,研究了0Cr19Mn21Ni2N高氮奥氏体不锈钢的高温塑性变形行为。结果表明,试验钢的第Ⅰ脆性区>1150 ℃,第Ⅲ脆性区为800~950 ℃,未出现第Ⅱ脆性区。第Ⅰ脆性区的出现主要是在加热过程中试验钢由奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为M2(C, N)析出相及Al2O3夹杂物引起的。试验钢的高温抗拉强度随温度升高而逐渐降低,断面收缩率在1000~1150 ℃温度范围内表现出极佳的热塑性,温度超过1150 ℃后断面收缩率逐渐下降,因此0Cr19Mn21Ni2N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内断面收缩率均在73%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

12.
采用Gleeble-2000热模拟试验机对Mn18Cr18N高氮奥氏体不锈钢进行高温拉伸试验,利用扫描电镜-能谱仪对拉伸试样断口形貌及断口附近的显微组织进行观察,用Thermo-Calc软件计算试验钢的相变及析出相,研究了Mn18Cr18N高氮奥氏体不锈钢的高温力学性能。结果表明,试验钢的第Ⅰ脆性区>1200 ℃,第Ⅲ脆性区为850~950 ℃,未出现第Ⅱ脆性区,第Ⅰ脆性区的出现主要是在加热过程中试验钢由γ奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为沿晶析出M23C6、M2(C, N)等硬脆相引起的;试验钢的抗拉强度随着拉伸温度升高而降低,断面收缩率在1000~1200 ℃温度范围内逐渐增大并表现出极佳的热塑性,断面收缩率均在70%以上,温度超过1200 ℃后断面收缩率急剧下降;Mn18Cr18N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内试验钢的断面收缩率均在70%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

13.
在Gleeble-1500D热模拟机上,针对37Mn5钢连铸坯,进行了热塑性测试.分析了37Mn5试样的显微组织及试样断口性质与塑性的关系.研究了第Ⅲ脆性区的脆化原因.实验结果表明:在1 300℃至800℃区间存在两个脆性温度区,第Ⅲ脆性温度域为900~800 ℃,其断面收缩率ψ=60.23%~29.61%;为指导37Mn5管坯钢的生产实践提供理论依据.  相似文献   

14.
通过Gleeble 1500热模拟试验机对含钛微合金钢SAPH440的连铸坯在1400~600℃温度区间内的高温延塑性进行了测试,对试样的断口形貌及组织进行了观察。确定tL~1350℃之间为连铸坯的第I脆性区,950~725℃之间为连铸坯的第Ⅲ脆性区;第Ⅲ脆性区塑性降低主要是由连铸坯中Al N的析出和晶界网状铁素体的形成造成。提高连铸机顶弯或矫直温度大于950℃可以减少连铸坯表面裂纹的产生。  相似文献   

15.
对铸态和均匀化退火的AZ91镁合金进行不同温度、不同应变速率的热模拟试验,研究了其高温热塑性.结果表明,与铸态合金相比,经均匀化退火的AZ91镁合金断面收缩率有较大提高,抗拉强度明显降低;当变形温度在300℃~420℃时,断面收缩率先增大后减小,在380℃~400℃之间达到最大值,抗拉强度趋势呈近似直线递减.在380℃~400℃范围内变形,塑性最好.均匀化处理的合金,在应变速率为0.05 s-1、0.5 s-1、5 s-1时进行热模拟,断面收缩率在变形温度为380℃时达到最大.在不同变形温度下,应变速率减小,断面收缩率增大,抗拉强度降低,塑性提高.  相似文献   

16.
《连铸》2015,(6)
通过研究在650~1 200℃范围内,中碳MnV非调质钢铸坯强度、塑性性能随温度变化的规律,找出了其最佳塑性区温度范围。在800℃以下温度,铸坯断面收缩率不超过75%,温度上升到850℃以上时,断面收缩率有较明显的提高,特别在925℃以上,断面缩率超过95%。据此确定连铸坯在生产过程中,入矫直点的温度大于925℃、出矫直点温度大于850℃的工艺要求,以减少铸坯表面裂纹。  相似文献   

17.
在MMS-200热力模拟试验机上进行高温拉伸试验,测试了不同气氛条件下CSP薄板坯连铸工艺生产的SPA-H钢的高温力学性能.结果表明:在氩气保护气氛条件下,应变速率为1×10<'-3>/s时,950~1250℃断面收缩率都大于70%,具有良好的高温塑性.在大气气氛条件下,当拉伸温度超过1050℃后,试样的断面收缩率迅速减小,在1100℃时断面收缩率取得最小值,只有40%左右.显微组织分析得出,这主要是因为Cu的富集相沿晶界向钢内部浸润,降低了铸坯的高温塑性.  相似文献   

18.
为考察新型超低碳贝氏体钢连铸坯的热塑性,利用热模拟实验技术研究了Cu-P合金化超低碳贝氏体钢在750~1350℃温度范围的拉伸应力-应变行为,热塑性和拉伸断口的变化,分析了产生这些变化的原因和磷对热塑性的影响机理。结果表明:Cu-P合金化使超低碳贝氏体钢高温拉伸时发生颈缩的应变量减小,但在750~1300℃温区的断面收缩率均达到60%以上。钢中微量硼有效抑制磷在奥氏体晶界的偏聚以及降低先共析铁素体的相变温度是高磷钢保持良好热塑性的主要原因。在800~900℃热塑性的下降与形变诱发Nb(C,N)粒子析出有关。根据热塑性和抗拉强度的变化规律,建议连铸坯在一冷区采取强冷,使表面温度迅速降低到1350℃以下,在二冷区采取弱冷,温度保持在800℃以上,从而使连铸坯始终具有较高的热塑性。  相似文献   

19.
《铸造技术》2015,(7):1682-1684
针对某厂生产的304不锈钢出现的表面裂纹及凹坑等缺陷,测定了该钢种直径为15 mm棒材在750~1 350℃内的强度及塑性,并分析其断裂方式及高温组织。结果表明,1 200℃之后试样的抗拉强度降低至30 MPa以下,屈服强度降低至20 MPa以下,高温强度变差;断面收缩率在800~900℃之间为65%以上,1 040~1 220℃其值平均为70%,塑性较好;在950~1 020℃的低塑性区范围内,试样的断裂方式为延晶断裂;1 300℃时的高温组织为奥氏体与少量不规则铁素体。  相似文献   

20.
Ta-10W合金的高温力学性能   总被引:1,自引:0,他引:1  
测试了退火态Ta-10W合金棒材从1000℃~2000℃的高温力学性能.室温下,Ta-10W合金具有较高的强度和塑性,随着温度的升高,极限抗拉强度以较快的速度下降,而屈服强度和弹性模量下降较慢,延伸率和断面收缩率稍有上升.在1600℃和2000℃时的拉伸断口中均出现了一种较为特殊的新型韧窝,特别是在1600℃同时出现的两种不同的韧窝,使该合金的塑性达到最高值.分析表明,Ta-10W合金屈服强度和弹性模量随温度的升高下降较为缓慢的原因是动态应变时效和动态再结晶综合作用的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号