首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of NiMoNx/γ-Al2O3 catalysts with various Ni contents were prepared by a topotactic reaction between their corresponding precursors NiO·MoO3/γ-Al2O3 and NH3. The catalysts were characterized using BET, XRD, and H2-TPR techniques, and the HDN activity of pyridine over these catalysts was tested. XRD patterns show that metallic Ni, Mo2N and a new phase of Ni3Mo3N exist in NiMoNx/γ-Al2O3 catalyst. H2-TPR studies indicate that the presence of Ni lowers the reduction temperature of the passivated surface layer of nitrided Mo/γ-Al2O3. The HDN activity for NiMoNx/γ-Al2O3 is much higher than that for NiMoSx/γ-Al2O3. The nitride catalyst with about 5.0 wt% NiO and 15.0 wt% MoO3 in its precursor has the highest specific denitrogenation activity. The appearance of Ni3Mo3N and the synergy between metallic Ni and nitrided Mo are probably responsible for the high activity of NiMoNx/γ-Al2O3 catalyst. The role of Ni in HDN reaction was also investigated. The activities decrease in the order: reduced Ni/γ-Al2O3≥nitrided Ni/γ-Al2O3>partially reduced Ni/γ-Al2O3 and sulfided Ni/γ-Al2O3.  相似文献   

2.
Autothermal reforming (ATR) of methane over the synthesized catalysts of 10Ni-2La/γ-Al2O3, 10Ni-2Ce/γ-Al2O3, 10Ni-2Co/γ-Al2O3 was investigated in the temperature range of 600-800 oC for the hydrogen production. The sequence of 2 wt% metal loading on nickel alumina support in relation to their catalytic performance was observed as La>Ce>Co. The excellent activity and selectivity of 10Ni-2La/γ-Al2O3 was superior to other catalysts owing to little carbon deposition (~2.23 mg coke/gcath), high surface area and good dispersion and stability in the alumina support. The reforming of methane was inferred to be initiated by the decomposition of hydrocarbon at the inlet zone, preceded by the reforming reactions in the catalyst bed. Our result shows that it can be possible to achieve the H2/CO ratio optimal to the GTL processes by controlling the O2/CH4 ratio of the feed inlet. The addition of oxygen to the feed inlet enhanced conversion efficiency substantially; probably, it favors the re-oxidation of carbonaceous residues formed over the catalyst surfaces, avoiding the catalyst deactivation and hence promoting catalyst stability.  相似文献   

3.
《Catalysis communications》2001,2(11-12):369-374
Platinum and Platinum–tin bimetallic catalysts supported on alumina were prepared by co-impregnation of both metallic precursors on the support and used as catalysts for the oxidation of SO2. Platinum dispersion was determined by means of H2–O2 titration. Tin addition (1 and 2 wt%) only slightly decreased the exposed platinum atoms suggesting that tin is mainly over the support. At temperatures lower than 300 °C, SO2 did not react with oxygen. Nevertheless, when the temperature was increased, the SO2 oxidation began. The ignition temperatures for SO2 oxidation (taken at 50% conversion) were 345 °C for 1% Pt/Al2O3 and 520 °C for 1% Pt–2% Sn/Al2O3. The strong displacement on activity suggests that tin plays an important role as inhibitor of the SO2 oxidation reaction.  相似文献   

4.
Macro-porous monolithic γ-Al2O3 was prepared by using macro-porous polystyrene monolith foam as the template and alumina sol as the precursor. Platinum and potassium were loaded on the support by impregnation method. TG, XRD, N2 adsorption–desorption, SEM, TEM, and TPR techniques were used for catalysts characterization, and the catalytic performance of macro-porous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts were tested in hydrogen-rich stream for CO preferential oxidation (CO-PROX). SEM images show that the macropores in the macro-porous monolithic γ-Al2O3 are interconnected with the pore size in the range of 10 to 50 μm, and the monoliths possess hierarchical macro-meso(micro)-porous structure. The macro-porous monolithic catalysts, although they are less active intrinsically than the particle ones, exhibit higher CO conversion and higher O2 to CO oxidation selectivity than particle catalysts at high reaction temperatures, which is proposed to be owing to its hierarchical macro-meso(micro) -porous structure. Adding potassium lead to marked improvement of the catalytic performance, owing to intrinsic activity and platinum dispersion increase resulted from K-doping. CO in hydrogen-rich gases can be removed to 10 ppm over monolithic K–Pt/γ-Al2O3 by CO-PROX.  相似文献   

5.
Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually lim-ited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed (RPB) reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/γ-Al2O3/nickel foam suiting for the shape and size of the rotor of RPB reac-tor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reac-tor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3-8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.  相似文献   

6.
For the oxygen removal from coke oven gas (COG) the catalytic activity of commercial catalysts CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was evaluated after a sulfidation pretreatment and compared to the Pt/γ-Al2O3 reference catalyst. Elemental analysis and temperature-programmed desorption showed that the oxidation reaction and the associated oxidation of active sulfidic centers is the main cause of deactivation despite the presence of other reductants, such as hydrogen. This approach could allow an appropriate sulfide catalyst to be designed for oxygen removal corresponding to the typical COG composition in the presence of H2S.  相似文献   

7.
This work continues a cycle of studies aimed at developing new approaches to the regeneration of coked bimetallic heterogeneous catalysts. The activities of three Ru-125 (Pt-Re/γ-Al2O3) industrial reforming catalyst samples (fresh catalyst (A), catalyst removed from an industrial reactor (B), and sample B after treating it with ozone in supercritical carbon dioxide (SC-CO2) (C)) are been compared in the reforming of n-heptane. It is established that sample B is deactivated appreciably: the conversion of n-heptane and the yield of reforming products are generally much lower than on the fresh catalyst. After treating it with an O3/SC-CO2 mixture, the conversion of n-heptane not only returns to the level of fresh sample A, but also exceeds it by a factor of 1.2. The qualitative composition of the products obtained on samples A, B, and C is nearly the same, but there are some changes in the quantitative ratio of certain products. Regeneration with ozone is found to be promising for further development and scaling.  相似文献   

8.
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150 K、空速641.11 L•(g cat)-1•h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

9.
In this work, a series of SO42-/TiO2/γ-Al2O3 solid acid catalysts were synthesized by impregnation method, in which nano-TiO2 was prepared by sol-gel method, and then the nano-TiO2 sol was loaded on porous γ-Al2O3 supporter through impregnation. The structure and property of catalyst were characterized by XRD, N2-BET, SEM, TEM, XPS, NH3-TPD, Pyridine-IR and FT-IR. In addition, the catalyst of chelate bidentate coordination acid center model was established. The catalytic performance test was carried out in the esterification of n-butyl alcohol with lauric acid and the catalyst showed excellent activity. The experimental results showed that the medium strength acid sites were more dominant active sites than the strong and weak acid sites for the rapid esterification reaction. Its kinetic behaviors and activation energy were studied for the esterification under the catalytic reaction condition.  相似文献   

10.
Rota  F.  Prins  R. 《Topics in Catalysis》2000,11(1-4):327-333
The hydrodenitrogenation (HDN) of o-toluidine and its reaction intermediates was studied over a NiMo/γ-Al2O3 catalyst. The kinetics of the HDN of methylcyclohexylamine and of the hydrogenation of cyclohexene were also studied. Hydrogenation of o-toluidine alone produces methylcyclohexene and methylcyclohexane. When a sufficient quantity of cyclohexene is added during the HDN of toluidine, methylcyclohexylamine, the first intermediate in the hydrogenation of toluidine, becomes detectable. Because of its strong adsorption constant and high rate constant for reacting further to methylcyclohexene and methylcyclohexane, methylcyclohexylamine is not observed in the HDN of toluidine. Adding cyclohexene decreases the adsorption of methylcyclohexylamine, thus enabling its detection. The rate and adsorption constants of methylcyclohexylamine and cyclohexene in the HDN of methylcyclohexylamine were calculated by fitting the kinetic data to a Langmuir–Hinshelwood equation. A two-site model was used to describe the surface reactions, with one site for the methylcyclohexylamine reactions and the other for the cyclohexene reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Co/γ-Al2O3 and CoRe/γ-Al2O3 catalysts have been studied by the steady-state isotopic transient kinetic analysis (SSITKA) technique. It was found that neither the CO partial pressure, the temperature nor the space velocity influences the in situ CO adsorption. The space velocity, H2/CO ratio and temperature was found to affect the intrinsic activity ( ) slightly, while the total pressure and syngas partial pressure had only a negligible effect. The surface concentrations and coverages were, however, unaffected by the space velocity, temperature, total pressure, syngas partial pressure and H2/CO ratio. All changes, however, affected the methane selectivity, indicating that the methane selectivity was not a function of the surface inventory of methane precursors.  相似文献   

12.
An ammoxidation of m-xylene was evaluated in a fixed-bed reactor using V2O5 on various oxides. Catalysts were prepared by wet impregnation method. At first, the loading of V2O5 was varied from 5 wt% to 20 wt% on γ-Al2O3 support to estimate the most effective amount of V2O5. Second, the effect of catalyst supports was examined at 10 wt% loading of V2O5. V2O5/TiO2 and V2O5/SiO2 catalysts were employed to compare the ammoxidation reaction with V2O5/γ-Al2O3. Most catalytic activity was observed when γ-Al2O3 was used as a support. Careful characterization was followed by physicochemical techniques, such as BET measurement, X-ray diffraction (XRD), Raman spectroscopy and temperature-programmed reduction (TPR). The results provided the clue that monolayer V2O5 was favorably dispersed on the surface of γ-Al2O3 up to 10 wt%, which led to the highest yield of isophthalonitrile (IPN).  相似文献   

13.
A major problem of using Ni-based catalysts is deactivation during catalytic cracking and reforming, lowering catalytic performance of the catalysts. Modification of catalyst with alkali-loading was expected to help reduce coke formation, which is a cause of the deactivation. This paper investigated the effects of alkali-loading to aluminasupported Ni catalyst on catalytic performance in steam reforming of biomass-derived tar. Rice husk and K2CO3 were employed as the biomass feedstock and the alkali, respectively. The catalysts were prepared by a wet impregnation method with γ-Al2O3 as a support. A drop-tube fixed bed reactor was used to produce tar from biomass in a pyrolysis zone incorporated with a steam reforming zone. The result indicated that K2CO3/NiO/γ-Al2O3 is more efficient for steam reforming of tar released from rice husk than NiO/γ-Al2O3 in terms of carbon conversion and particularly hydrogen production. Effects of reaction temperature and steam concentration were examined. The optimum temperature was found to be approximately 1,073 K. An increase in steam concentration contributed to more tar reduction. In addition, the K2CO3-promoted NiO/γ-Al2O3 was found to have superior stability due to lower catalyst deactivation.  相似文献   

14.
In the current paper, a strategy for catalytic degradation of benzene over Pd/γ-Al2O3 catalysts via different atmospheres (H2, N2, He and air) pretreatment was carried out in a fixed bed reactor. The experimental results indicated that H2, N2, and He pretreatments have a significant positive effect on the initial activity of the catalyst compared to air. We have also investigated the effects of pretreatment atmospheres on the catalytic performance for benzene degradation through the information on the chemical state and crystal structure of the catalysts using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and CO chemisorption measurements techniques. The chemical state of Pd species decreased via H2 pretreatment, leading to the increase of the initial catalytic activity, while chemical state increased accompanying with a decrease in degradation benzene via air pretreatment. There is no change in the chemical state of Pd species using inert atmosphere (N2 and/or He) pretreatment, but the initial activity of the catalyst improved significantly due to the modified crystal structure of Pd species in the catalysts, with the crystalline PdO being transformed to amorphous state.  相似文献   

15.
We report a plasma-assisted CO2 hydrogenation to CH3OH over Fe2O3/γ-Al2O3 catalysts, achieving 12% CO2 conversion and 58% CH3OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe-based catalysts, as well as optimized reaction conditions. We characterized catalysts by X-ray powder diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), CO2 and CO temperature programmed desorption (CO2/CO-TPD), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x-ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared ( FTIR). The XPS results show that the enhanced CO2 conversion and CH3OH selectivity are attributed to the chemisorbed oxygen species on Fe2O3/γ-Al2O3. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO2 adsorption capacity exhibit a higher reaction performance. In situ DRIFTS gain insight into the specific reaction pathways in the CO2/H2 plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO2 hydrogenation to CH3OH.  相似文献   

16.
A standard Ni-Mo/-Al2O3 catalyst containing 4 wt% Ni was modified by addition of nickel (2 wt%) and, alternatively, of vanadium (4 wt%) by contacting with a solution of the respective metal naphthenate. The catalysts were sulfided and tested in a batch reactor at 350°C and 165 bar for hydrogenation of naphthalene and for hydroprocessing of dibenzothiophene. Reaction networks were determined for each reactant, and the dependence of the pseudo firs-torder rate constants on the amount of nickel and of vanadium in the catalyst was used to determine the effects of nickel sulfide and of vanadium sulfide deposits on catalyst performance. For example, the nickel sulfide deposits only slightly affected the rate constants for hydrogenation in either network, but the vanadium sulfide deposits led to a decrease of at most 50% in the rate constants for hydrogenation reactions in the naphthalene network and to a doubling of the rate constants for hydrogenation reactions in the dibenzothiophene network. The nickel sulfide deposits led to almost no change in the rate constant for hydrogenolysis of dibenzothiophene (to give biphenyl), but the vanadium sulfide deposits led to a threefold decrease in the rate constant for this reaction. The nickel sulfide deposits have little activity for reactions giving lower-molecular-weight (cracking) products, but the vanadium sulfide deposits have a relatively high activity for cracking, which suggests that they are acidic. The effects of the deposits are complex, as they both block catalytic sites and form new ones. The results indicate a need for representing the nickel and sulfide deposits separately in process models for heavy oil hydroprocessing.  相似文献   

17.
The kinetic isotope effect for combustion of a C6H5Cl/C6D5Cl mixture on Pt/-Al2O3 was found to be close to unity between 520 and 580 K. However, in the presence of an excess of heptane, an isotope effect of 1.5 was found between 460 and 490 K. For the combustion of a C6H6/C6D6 mixture the kH/kD value was around 2 between 404 and 439 K. The results show that in the combustion of chlorobenzene per se, C–H bond activation is not a rate-determining step. On Pt sites, C–Cl bond scission probably occurs already at low temperatures. The chlorine and the phenyl group cannot easily react further. Chlorine on the surface is active in chlorination, which is shown by the formation of C6D5Cl in an experiment with C6H5Cl and C6D6. Only at a certain temperature is the chlorine removed, partly as polychlorinated benzenes. The removal of chlorine from the catalyst allows oxygen to take part in the reaction, which determines the rate of the combustion of chlorobenzene. When heptane is present, Cl is removed from the surface and C–H bond scission can become rate determining, as is also the case in the combustion of C6H6/C6D6. Upon (partial) combustion of C6H5Cl/C6D5Cl and C6H6/C6D6 mixtures on a Pt/-Al2O3 catalyst, hydrogen–deuterium exchange occurs on the -Al2O3 support.  相似文献   

18.
《Catalysis communications》2009,10(15):2601-2605
The catalytic oxidation of low concentration of methane (2000 ppmV) in excess oxygen was investigated over unsulfated and pre-sulfated Pt/γ-Al2O3 catalysts. Over unsulfated samples, catalyst activity increased slightly with Pt concentration and with catalyst loading in the reactor. This enhancement was stronger over pre-sulfated catalyst relative to unsulfated samples. The results suggest that the new catalytic sites generated during sulfation (formed by the interaction between surface support sulfates and highly oxidized Pt atom at the edge of the platinum particle) may activate the almost non-polar C–H bonds of methane through a dissociate adsorption of CH4, thus the increase in the sulfated catalyst loading results in the increase in the number of the catalytic sites generated during sulfation. The probability of the initial C–H activation of CH4 increases and may lead to the observed increase in the oxidation rate for CH4O2 reaction.  相似文献   

19.
Molecular dynamics simulations of model systems for the surface interaction of lanthanum oxide supported on -alumina have been carried out at 1500 K. The onset of formation of perovskite-like phases has been analysed in samples containing four different concentrations of lanthanum oxide. A mechanism of the formation of perovskite-like polyhedra is proposed. This mechanism essentially involves a displacement of an oxide ion associated to an octahedral aluminum by a lanthanum ion and appears to be independent of La2O3 loadings.  相似文献   

20.
Structural characterization, the mechanism of catalytic activity generation and the nature of active sites of a NiSO4/γ-Al2O3 catalyst for isobutene oligomerization were studied by temperature programmed reduction (TPR), X-ray diffraction (XRD), diffuse reflectance infrared fourier transformed (DRIFTS) and X-ray photoelectron spectroscopy (XPS) techniques. The TPR measurements together with the XRD data indicated that calcination of the catalyst at 500 °C did not form either nickel oxide or nickel aluminate. The presence of only one type of surface nickel species formed by the incorporation of nickel ions into the surface vacant sites of γ-alumina lattice was indicated by XPS with Ar+ ions sputtering and TPR measurements. XPS analysis of the calcined catalyst suggested that the oxidation state of nickel ions in the calcined catalyst was (+2) and after calcination the nickel ions were coordinated to relatively more basic ligands. The surface acid centers of the catalyst were found to be only Lewis type. SO4 2? ions were found to be present as a chelating bidentate ligand and enhanced the acidity of metal ( $ {\text{Al}}^{3 + } $ and/or $ {\text{Ni}}^{2 + } $ ) Lewis acid centers. The results suggested that the combined effects of the presence of the bidentate SO4 2? ligand and dehydroxylation generate coordinatively unsaturated $ {\text{Ni}}^{2 + } $ that interact with isobutene during the oligomerization reaction. The formation of lower-valent nickel ions ( $ {\text{Ni}}^{x + } ,x\; \le\; 1 $ ) was demonstrated by in situ DRIFTS using CO as a probe molecule and by XPS measurements. Formation of a binuclear bridging carbonyl complex, $ [{\text{Ni}}({\text{CO}})^{ + } ]_{2} $ suggested that some lower-valent nickel species were formed via in situ reduction by isobutene. Analysis of Ni 2p photolines indicated the appearance of a new lower-valent nickel species ( $ {\text{Ni}}^{x + } ,x \;\le\; 1 $ ) during the course of isobutene oligomerization. Hence it is plausible that lower-valent nickel species might act as the active center for the oligomerization reaction, while the SO4 2? ions enhance the acidity of the Lewis acid sites on the surface and assist in the adsorption of reactant molecules on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号