首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环氧树脂基体的热膨胀系数(CTE)对碳纤维增强环氧树脂层状材料的性能影响巨大,如何降低环氧树脂基体的CTE是提高碳纤维增强环氧树脂复合材料低温使用性能的关键。本研究采用聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)和聚醚酰亚胺(PEI)3种热塑性塑料改性环氧树脂,研究了这3种热塑性塑料对环氧树脂基体CTE的影响。结果表明:这3种热塑性塑料分子链中的羰基在环氧树脂固化过程中可与环氧分子侧链上的羟基形成氢键作用,从而加强了热塑性塑料与环氧树脂的界面作用;采用这3种热塑性塑料改性环氧树脂均可提高环氧树脂基体的玻璃化转变温度;相对于纯环氧树脂,PBT、PEI和PC改性的环氧树脂在玻璃化转变温度下的CTE分别降低了14.99%、17.44%和23.96%,但在玻璃化转变温度上的CTE均高于纯环氧树脂。  相似文献   

2.
Two types of glass fiber reinforced plastic (GFRP) composites were fabricated viz., GFRP with neat epoxy matrix (GFRP-neat) and GFRP with hybrid modified epoxy matrix (GFRP-hybrid) containing 9 wt.% of rubber microparticles and 10 wt.% of silica nanoparticles. Fatigue tests were conducted on both the composites under WISPERX load sequence. The fatigue life of the GFRP-hybrid composite was about 4–5 times higher than that of GFRP-neat composite. The underlying mechanisms for improved fatigue performance are discussed. A reasonably good correlation was observed between the experimental fatigue life and the fatigue life predicted under spectrum loads.  相似文献   

3.
In this study, the plant and waste fibers (pineapple leaf fiber, banana fiber and recycled disposable chopstick fiber) with an average length from 2.3 to 3.9 mm were chemically modified by 3-aminopropyltriethoxysilane (A1100). Subsequently, these modified fibers (20 wt.%) and epoxy resin were mixed and cured to form novel fiber-reinforced green composites. The results showed that the decomposition temperatures of the chemically modified fiber-reinforced composites were obviously higher than those of untreated fiber-reinforced composites. In addition, the tensile strengths of the reinforced epoxy composites could be increased from 80% to 117% as compared to that of the pristine epoxy. Moreover, the modified pineapple leaf fiber-reinforced composites exhibited better thermal properties than did other reinforced samples. On the other hand, modified recycled disposable chopstick fiber-reinforced composites possessed pronounced mechanical properties.  相似文献   

4.
为了提高碳纤维增强环氧树脂复合材料在低温(77 K)循环条件下的微裂纹抗性,文中采用共沉淀法制备了具有良好顺磁性的四氧化三铁/氧化石墨烯(Fe_3O_4/GO),采用红外光谱、X射线衍射、扫描电镜、透射电镜等手段研究了Fe_3O_4/GO在环氧树脂基体中的有序排列对环氧树脂及碳纤维增强环氧树脂复合材料低温性能的影响。结果表明,Fe_3O_4/GO的有序排列可有效提高环氧树脂基体的低温力学性能及降低环氧树脂基体的热膨胀系数,并可明显改善碳纤维增强环氧树脂(CF/EP)复合材料的低温微裂纹抗性;相对于纯环氧树脂,改性环氧树脂的热膨胀系数和低温环境下的微裂纹密度分别降低了36.5%和37.5%。  相似文献   

5.
This paper studies the effects of multi-walled carbon nanotubes (MWCNTs) on the thermal residual stresses in polymeric fibrous composites. Reinforced ML-506 epoxy nanocomposites with different amounts of homogeneously dispersed MWCNTs (0.1 wt.%, 0.5 wt.% and 1 wt.%) were fabricated using the sonication technique. Thermo-mechanical analysis and tensile tests of the specimens were carried out to characterize the thermal and mechanical properties of MWCNTs/epoxy composites. Due to the negative thermal expansion and high modulus of MWCNTs, addition of MWCNTs resulted in a great reduction of the coefficient of thermal expansion (CTE) of epoxy. The MWCNTs also moderately increased the Young’s modulus of the epoxy. Then, the effects of adding MWCNTs on micro and macro-residual stresses in carbon fiber (CF)/epoxy laminated composites were investigated using the energy method and the classical lamination theory (CLT), respectively. The results indicated that the addition of low amounts of MWCNTs leads to a considerable reduction in thermal residual stress components in both micro and macro levels.  相似文献   

6.
The coefficient of thermal expansion (CTE) of stir cast Al–Mg alloy A535 and its composites reinforced with a mixture of 5 wt.% fly ash and 5 wt.% silicon carbide, 10 wt.% and 15 wt.% fly ash particles was investigated using thermomechanical analysis (TMA). Micromechnical models proposed by Turner, Kerner and Schapery as well as the rule of mixture (ROM) were employed to compute the CTEs of the composites within the same temperature range. Experimental results showed that the CTE of A535 decreased with the addition of fly ash and SiC particles. Subjecting the test samples to a second re-heat cycle also affected their CTE response. The CTE obtained for A535 during the first heating cycle was higher than that obtained during the re-heat cycle whereas the reverse result was obtained for the fly ash composites. Furthermore, the analytical models could not predict the experimental CTEs the composites due to complexities arising from the presence of porosities, reaction products and other defects.  相似文献   

7.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

8.
The interest in using natural fibers as reinforcement for thermoplastic polymers was attracted several studies covering both material science and green technology. The use of plant fiber requires the issue of compatibility between matrix and fibers. This study treat the effect of chemical modification (alkali treatment, etherification treatment and esterification treatment) on the Alfa fiber surface, and its impact on mechanical and thermal properties of composites. To this end, the percentage of fibers was fixed at (20 wt.%), and to evaluate the effect of each chemical modification in Alfa reinforced polypropylene (PP), based on the mechanical and thermal properties of composites. Composites containing chemically modified Alfa fibers were found to possess improved mechanical and thermal properties when compared to non-treated composite. The highest improvement in Young’s modulus was observed with esterified fibers, with a 35% increase. Thermal stability is best increased using etherification-treated fiber, with gains in the temperature up to 80 °C.  相似文献   

9.
The soft modifiers added to improve the fracture toughness of epoxies generally deteriorate their mechanical properties. Hence, oxidized multi-walled carbon nanotubes (O-CNTs) were added to the epoxy modified with reactive oligomer. The NCO terminated reactive oligomer acts as a cross-linker between the O-CNTs and the OH groups of the epoxies. The impact strengths of the 15 wt.% oligomer modified epoxy containing 0.5 wt.% of O-CNTs at room temperature (RT) and cryogenic temperature (CT) are enhanced by 23.6% and 69.5% compared to that of the unmodified epoxy. In addition to increasing fracture toughness, the tensile strength (TS) of the modified epoxy/O-CNTs at CT is found to be 91.7 MPa, which is comparable to that of the unmodified epoxy (92.1 MPa). Hence, the attachment of O-CNTs to the reactive oligomer modified epoxy can be an efficient approach to toughen epoxy resins without compromising their tensile properties.  相似文献   

10.
High performance poly(etherimide) (PEI)-based nanocomposites (PNs) with multi-walled carbon nanotubes (MWCNT) were obtained via melt mixing. To achieve this, PEI was mixed with a well-dispersed commercial poly(butylene terephthalate) (PBT)/MWCNT master-batch in an attempt to transfer the dispersed MWCNTs to a PEI matrix. A broad and homogeneous dispersion of MWCNTs throughout the PEI-based matrix was obtained. The electrical percolation threshold (pc) was reached at only 1 wt.% MWCNT. This pc showed a power law dependence of conductivity on filler concentration, with a critical exponent of 1.92, which indicates that a three dimensional percolated structure was achieved. The glass transition temperature and the pressure at the output end of the extruder decreased when the master-batch was added, indicating that the processability of PEI was improved. In addition to this, the modified PEI-based PNs presented ductile behaviour and an ameliorated (12% with 5 wt.% MWCNT) elastic modulus compared with pure PEI.  相似文献   

11.
Influence of cryogenic thermal cycling treatment (from ?120 °C to 120 °C at 1.3 × 10?3 Pa) on the thermophysical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 °C of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interfacial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space of microdefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed.  相似文献   

12.
The toughening of epoxy modified with poly(butylene terephthalate)/poly(tetra-methylene glycol) (PBT–PTMG) copolymers of various chemical composition was investigated. The fracture toughness of the brittle epoxy was highly enhanced by the inclusion of PBT–PTMG copolymer without loss of other intrinsic mechanical properties, such as modulus and yield stress. These modified epoxies also exhibited synergism in toughening. The remarkable enhancement and the synergism in fracture toughness of PBT/PTMG-modified epoxies is possibly due to the enhancement of the degree of phase transformation toughening, which is a result of the enhancement of the degree of perfectness of PBT spherulites in the presence of PTMG segments. The changes in micro-morphology of PBT/PTMG phases induced by the different chemical composition of copolymer is the most important cause of the dependency of the fracture energy on the processing variables, such as the relative PBT/PTMG composition and total amount of modifiers. Other toughening mechanisms, such as crack bifurcation, ductile fracture of PBT/PTMG phases, main crack-path alteration, and crack bridging, also contributed to toughness enhancement of the modified epoxies. © 1998 Chapman & Hall  相似文献   

13.
The effects of oxygen plasma processing on the improved interfacial adhesion properties of poly(1,4-phenylene-cis-benzobisoxazole) (PBO) fiber reinforced epoxy composites have been investigated in this paper. Both As-spun (AS) and high-modulus (HM) PBO fiber systems were studied. The characterization techniques included microscopy, surface analysis, and composite interfacial adhesion tests. The results showed that the high-modulus fiber surface free energy could be increased significantly by 42.2% from 46.2 to 65.7 mJ/m2, while the tensile strength was only slightly decreased by 3.4% from 5.87 to 5.67 GPa. In addition, the interfacial adhesion strength of PBO fiber reinforced epoxy composite was improved by 37.5% from 32.5 to 44.7 MPa for the HM fiber system. The improvement has been attributed to the enhanced cohesive failure that dissipated more fracture energy.  相似文献   

14.
Vacuum assisted resin infusion molding (VARIM) was used to produce multiscale fiber reinforced composites (M-FRCs) based on carbon nanofibers dispersed in an epoxy resin. Flexural, interlaminar shear strength (ILSS) and thermomechanical tests are presented for the 0.1 wt% and 1 wt% M-FRCs and compared with the neat fiber reinforced composites (FRCs). Flexural strength and modulus increased (16–20%) and (23–26%), respectively for the 0.1 wt% and 1 wt% M-FRCs when compared to the neat FRCs. ILSS properties increased (6% and 25%) for the 0.1 wt% and 1 wt% M-FRCs, respectively when compared to neat FRCs. The glass transition temperatures (Tg) of both M-FRC samples were 25 °C higher than the neat FRC. Coefficients of thermal expansion (CTE) of the M-FRC samples improved compared to the neat FRC. The improved Tg and CTE properties in the M-FRC samples are attributed to synergistic interactions between the CNF/PNC matrix and glass fibers.  相似文献   

15.
采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。  相似文献   

16.
In this article, a flax fiber yarn was grafted with nanometer sized TiO2, and the effects on the tensile and bonding properties of the single fibers and unidirectional fiber reinforced epoxy plates were studied. The flax fiber yarn was grafted with nanometer sized TiO2 through immersion in nano-TiO2/KH560 suspensions under sonification. The measured grafting content of the nano-TiO2 ranged from 0.89 wt.% to 7.14 wt.%, dependent on the suspension concentration. With the optimized nano-TiO2 grafting content (∼2.34 wt.%), the tensile strength of the flax fibers and the interfacial shear strength to an epoxy resin were enhanced by 23.1% and 40.5%, respectively. The formation of Si–O–Ti and C–O–Si bonds and the presence of the nano-TiO2 particles on the fiber surfaces contributed to the property enhancements. Unidirectional flax fiber reinforced epoxy composite (Vf = 35.4%) plates prepared manually showed significantly enhanced flexural properties with the grafting of nano-TiO2.  相似文献   

17.
It is understood that small amount of nanoclay in the neat epoxy and fiber reinforced epoxy composite system improves the mechanical properties. The mechanical properties of most of polymer matrix composites are rate sensitive. Most of the researches have concentrated on the behavior of the polymer composites at high strain rates. The present research work is to study the effect of clay on neat epoxy and glass/epoxy composites, at low strain rates. The clay in terms of 1.5, 3 and 5 wt% are dispersed in the epoxy resin using mechanical stirrer followed by sonication process. The glass/epoxy nanocomposites are prepared by impregnating the glass fiber with epoxy–clay mixture by hand lay-up process followed by compression molding. Characterization of the nanoclay is done by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Tensile stress–strain curves are obtained at strain rates of 10−4, 10−3, 10−2 and 10−1 s−1 by a servo-hydraulic machine and the variation of modulus, strength and failure strain with strain rate are determined. The results show that, even at low strain rates, the longitudinal strength and stiffness increase as strain rate increases for all clay loadings. It is observed that the tensile modulus increases as the clay loading increases for both epoxy and glass/epoxy nanocomposites. Scanning electron microscopy is used to study the adhesion of composites in fracture surfaces.  相似文献   

18.
In this investigation, Polyetherimide (PEI) reinforced with multi-walled carbon nanotube (MWCNT) using novel melt blending technique. Surface of MWCNTs are modified by acid treatment as well as by plasma treatment. PEI nano composites with 2 wt% treated MWCNT shows about 15% improvement in mechanical properties when compared to unfilled PEI. The thermal decomposition kinetics of PEI/MWCNT nano composites has been critically analyzed by using Coats – Redfern model. The increase in activation energy for thermal degradation by 699 kJ/mol for 2 wt% MWCNT implies improvement in the thermal properties of PEI. Studies under Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM) depict significant interfacial adhesion with uniform dispersion of MWCNT in polymer matrix due to surface functionalization. 0.5 wt% chemically modified MWCNT shows typical alignment of MWCNT. There is a significant improvement in mechanical properties and thermal properties for surface functionalized MWCNT reinforced.  相似文献   

19.
采用混酸氧化及表面接枝改性的方法制备了表面含不同官能团的多壁碳纳米管(MWCNTs), 并研究了不同MWCNTs对环氧树脂的低温(77 K)抗冲击性能及热膨胀系数(CTE)的影响。结果表明: 通过接枝反应将—NCO基团封端的PEO齐聚物引入MWCNTs表面, 可提高MWCNTs在环氧树脂基体中的分散性, 加强MWCNTs与环氧树脂的界面作用; 相对于纯环氧树脂, 添加质量分数为0.5%的纯MWCNTs、 氧化MWCNTs和表面接枝MWCNTs改性后的环氧树脂的低温冲击强度分别升高了10.27%、 26.13%和32.95%, 而CTE则分别降低了14.79%、 29.59%和40.29%。这表明表面接枝改性MWCNTs可明显提高环氧树脂基体的低温抗冲击性能并降低环氧树脂在玻璃化转变温度下的CTE。  相似文献   

20.
Flexural creep properties were studied as a function of fiber weight fraction and processing-induced fiber alignment in extrusion/compression-molded, long fiber-reinforced thermoplastic (LFT) nylon 6/6, polypropylene, and high-density polyethylene and their 10 wt.% and 40 wt.% E-glass fiber reinforced LFT composites. The residual fiber lengths and probability distribution parameters were near-equal, regardless of the initial fiber length and processing. Creep compliances decreased with increasing fiber weight fraction, and clear influence of fiber alignment was found in model parameters. Processing-induced fiber alignment imaged using X-ray radiography, was correlated with the creep compliances of strategically sectioned specimens, and tested as per ASTM D-2990. Longitudinal fibers aided in lowering the creep compliance, and the range in compliance decreased with lower preferential fiber alignment. Creep compliances from flexural creep tests and dynamic mechanical analysis/static creep tests were combined using time–temperature–stress superposition (TTSSP) to construct long-term master curves that correlated closely with long-term tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号