首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work studied the combination effect of physical drying with chemical modification of carbon nanotubes (CNTs) on some through-thickness properties of carbon fiber/epoxy composites. Different drying methods of heat drying and freeze drying were utilized to affect CNT organization form in carbon fiber/CNTs preforms and composites: The adoption of heat-drying method made CNTs more inclined to form aggregates accompanied with randomly scattered CNTs, while continuous CNT networks could always be assembled when freeze drying method was employed. The formation mechanism of such CNT networks was discussed, and could be described as “freeze drying within confined space.” Chemical characteristic of CNTs was controlled by choosing different solutions of non-functionalized CNTs (NOCNTs) or hydroxyl-modified CNTs (OHCNTs). As a consequence, CNT networks modified composites, especially that with OHCNTs formed networks, displayed significantly better electrical performance than composites with CNT aggregates and scattered CNTs; NOCNT networks and scattered OHCNTs made the corresponding composites possess higher interlaminar shear strength (ILSS) value, whereas OHCNT networks impaired ILSS while enhancing flexural strength and modulus of composites.  相似文献   

2.
In order to optimize carbon nanotube (CNT) dispersion state in fiber/epoxy composite, a novel kind of CNT organization form of continuous networks was designed. The present work mainly discussed the feasibility of preparing continuous CNT networks in composite: Fiber fabric was immersed into CNT aqueous solution (containing dispersant) followed by freeze drying and pyrolysis process, prior to epoxy infusion. The morphologies of fabric with CNTs were observed by Scanning Electron Microscope. The relationship between CNT networks and flowing epoxy resin was studied. Properties of composite, including out-of-plane electrical conductivity and interlaminar shear strength (ILSS), were measured. The results demonstrated that continuous and porous CNT networks formed by entangled CNTs could be assembled in fiber fabric. Most part of them were preserved in composite due to the robustness of network structures. The preserved CNT networks significantly improved out-of-plane electrical conductivity, and also have an effect on ILSS value.  相似文献   

3.
Vibration damping characteristic of nanocomposites and carbon fiber reinforced polymer composites (CFRPs) containing multiwall carbon nanotubes (CNTs) have been studied using the free and forced vibration tests. Several vibration parameters are varied to characterize the damping behavior in different amplitudes, natural frequencies and vibration modes. The damping ratio of the hybrid composites is enhanced with the addition of CNTs, which is attributed to sliding at the CNT-matrix interfaces. The damping ratio is dependent on the amplitude as a result of the random orientation of CNTs in the epoxy matrix. The natural frequency shows negligible influence on the damping properties. The forced vibration test indicates that the damping ratios of the CFRP composites increase with increasing CNT content in both the 1st and 2nd vibration modes. The CNT-epoxy nanocomposites also show similar increasing trends of damping ratio with CNT content, indicating the enhanced damping property of CFRPs arising mainly from the improved damping property of the modified matrix. The dynamic mechanical analysis further confirms that the CNTs have a strong influence on the composites damping properties. Both the dynamic loss modulus and loss factor of the nanocomposites and the corresponding CFRPs show consistent increases with the addition of CNTs, an indication of enhanced damping performance.  相似文献   

4.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

5.
In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing.  相似文献   

6.
We investigated the effects of carbon nanotube (CNT) modification with silane on the flexural and fracture behaviors of modified carbon nanotube epoxy/basalt (CNT/epoxy/basalt) composites. Flexural and mode I fracture tests were performed using acid-treated and silane-treated CNT/epoxy/basalt composites, respectively. FT-IR analysis was conducted to determine the chemical change on the surface of basalt fiber due to the silane modification. After the fracture tests, the fracture surfaces of the CNT/epoxy/basalt composites were examined with scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt composites, depending on the CNT modification. The results show that the flexural modulus and strength of silane-treated CNT/epoxy/basalt composites are ~10% and ~14% greater, respectively, than those of acid-treated CNT/epoxy/basalt composites. The fracture toughness GIc of silane-treated CNT/epoxy/basalt composites was ~40% greater than that of acid-treated CNT/epoxy/basalt composites. SEM examination revealed that the improvement in the flexural and fracture properties of silane-treated CNT/epoxy/basalt composites occurred due to enhanced dispersion and interfacial interaction between the silane-modified CNTs and the epoxy.  相似文献   

7.
Carbon fiber-reinforced epoxy composites modified with carbon nanotubes (CNTs) were fabricated and characterized. High-energy sonication was used to disperse CNTs in the resin, followed by infiltration of fiber preform with the resin/CNT mixture. The effects of sonication time on the mechanical properties of “multiscale” composites, which contain reinforcements at varying scales, were studied. A low CNT loading of 0.3 wt% in resin had little influence on tensile properties, while it improved the flexural modulus, strength, and percent strain to break by 11.6%, 18.0%, and 11.4%, respectively, as compared to the control carbon fiber/epoxy composite. While sonication is an effective method to disperse CNTs in a resin, duration, intensity, and temperature need to be controlled to prevent damages imposed on CNTs and premature resin curing. A combination of Halpin–Tsai equations and woven fiber micromechanics was used in hierarchy to predict the mechanical properties of multiscale composites, and the discrepancies between the predicted and experimental values are explained.  相似文献   

8.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT.  相似文献   

9.
To assess the effect of carbon nanotube (CNT) grafting on interfacial stress transfer in fiber composites, CNTs were grown upon individual carbon T-300 fibers by chemical vapor deposition. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on both pristine and CNT-decorated fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Despite the fiber strength degradation resulting from the harsh CNT growth conditions, the CNT-modified fibers lead to a twofold increase in interfacial shear strength which correlates with the nearly threefold increase in apparent fiber diameter resulting from CNT grafting. These observations corroborate recently published studies with other CNT-grafted fibers. An analysis of the relative contributions to the interfacial strength of the fiber diameter and strength due to surface treatment is presented. It is concluded that the common view whereby an experimentally observed shorter average fragment length leads to a stronger interfacial adhesion is not necessarily correct, if the treatment has changed the fiber tensile strength or its diameter.  相似文献   

10.
Carbon nanotubes (CNTs) are one of the prime choice nano-filler reinforcement for fibrous polymeric composites. But the stability of the CNT/polymer interface is yet to be ensured for elevated temperature engineering applications. Present study deals with the assessment of elevated temperature durability of glass fiber/epoxy (GE) composite with various level of multi walled carbon nanotube (MWCNT) loading. Flexural testing at room temperature revealed that addition of 0.1% MWCNT yielded maximum strength (+32.8% over control GE) and modulus (+11.5% over control GE) amongst all the CNT modified composite systems. Further, MWCNT–GE composites resulted in accelerated degradation of mechanical performance with increasing temperature as compared to GE composite. Dynamic mechanical thermal analysis (DMTA) was carried out to study the viscoelastic behavior of all composites over a range of temperature. The design parameters were evaluated by Weibull probability function. Fractographic analysis figured out various failure modes in all composites at various temperatures.  相似文献   

11.
Composites have set the standard for high strength materials for several decades. With the discovery of nanotubes, new possibilities for reinforced composites have arisen, with potential mechanical properties superior to those of currently available materials. This paper reports the properties of epoxy matrix reinforced with fibres of carbon nanotubes (CNTs) which, in many ways, are similar to standard composites reinforced with commercial fibres. The composites were formed by the back diffusion of the uncured epoxy into an array of aligned fibres of CNTs. The fibre density and volume fraction were measured from thermogravimetric analysis (TGA). Properties in tension and compression were measured, and the level of fibre–matrix interaction analysed fractographically. The results show the significant potential for this route to CNT reinforcement.  相似文献   

12.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

13.
We investigate dynamic fracture of three types of multiwalled carbon nanotube (MWCNT)/epoxy composites and neat epoxy under high strain-rate loading (105106 s−1). The composites include randomly dispersed, 1 wt%, functionalized and pristine CNT/epoxy composites, as well as laminated, ∼50 wt% CNT buckypaper/epoxy composites. The pristine and functionalized CNT composites demonstrate spall strength and fracture toughness slightly higher and lower than that of neat epoxy, respectively, and the spall strength of laminated CNT buckypaper/epoxy composites is considerably lower; both types of CNTs reduce the extent of damage. Pullout, sliding and immediate fracture modes are observed; the fracture mechanisms depend on the CNT–epoxy interface strength and fiber strength, and other microstructures such as the interface between CNT laminates. Compared to the functionalized CNT composites, weaker CNT–epoxy interface strength and higher fiber strength lead to a higher probability of sliding fracture and higher tensile strength in the pristine CNT composites at high strain rates. On the contrary, sliding fracture is more pronounced in the functionalized CNT composites under quasistatic loading, a manifestation of a loading-rate effect on fracture modes. Despite their helpful sliding fracture mode and large CNT content, the weak laminate–laminate interfaces play a detrimental role in fracture of the laminated CNT buckypaper/epoxy composites. Regardless of materials, increasing strain rates leads to pronounced rise in tensile strength and fracture toughness.  相似文献   

14.
Methylene-bis-ortho-chloroanilline (MOCA), an excellent cross-linker widely used to prepare cured polyurethane (PU) elastomers with high performance, was used to modify a multi-walled carbon nanotube. PU/carbon nanotube (CNT) nanocomposites were prepared by incorporation of the MOCA-grafted CNT into PU matrix. Fourier transform infrared spectra have shown that the modified CNTs have been linked with PU matrix. The microstructure of composites was investigated by Field-Emission Scanning Electron Microscopy. The results of Dynamic Mechanical Thermal Analysis and Differential Scanning Calorimetry have investigated the grafted CNTs as cross-linker in the cured composites. The studies on the thermal and mechanical properties of the composites have indicated that the storage modulus and tensile strength, as well as glass transition temperature and thermal stability are significantly increased with increasing CNT content.  相似文献   

15.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

16.
A new method to realize the uniform coating of carbon nanotubes (CNTs) to carbon fibers (CFs) has been developed, which enables the scalable fabrication of CNT containing CF/epoxy composites. In this method, CNTs are treated by cationic polymers, then, the CNTs are coated to CFs by immersion into a CNT/water suspension. Good dispersion is achieved by repulsive force between positively charged CNTs and uniform coating of the CNTs is achieved by attractive forces between positively charged CNTs and negatively charged CFs. It is found that the use of specific cationic polymers including polyethyleneimine (PEI) results in stable CNT/water suspensions, and uniform coating of the CNTs. Single fiber fragmentation tests of the CF/epoxy composites were conducted to evaluate the strength of interface and interphase under shear loading. The results show that the combination of epoxy resin sizing and PEI treated CNT coating to CFs results in high interfacial shear strength.  相似文献   

17.
Nano/micrometer hybrids are prepared by chemical vapor deposition growth of carbon nanotubes (CNTs) on SiC, Al2O3 and graphene nanoplatelet (GNP). The mechanical and self-sensing behaviors of the hybrids reinforced epoxy composites are found to be highly dependent on CNT aspect ratio (AR), organization and substrates. The CNT–GNP hybrids exhibit the most significant reinforcing effectiveness, among the three hybrids with AR1200. During tensile loading, the in situ electrical resistance of the CNT–GNP/epoxy and the CNT–SiC/epoxy composites gradually increases to a maximum value and then decreases, which is remarkably different from the monotonic increase in the CNT–Al2O3/epoxy composites. However, the CNT–Al2O3 with increased AR  2000 endows the similar resistance change as the other two hybrids. Besides, when AR < 3200, the tensile modulus and strength of the CNT–Al2O3/epoxy composites gradually increase with AR. The interrelationship between the hybrid structure and the mechanical and self-sensing behaviors of the composites are analyzed.  相似文献   

18.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

19.
A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0–10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications.  相似文献   

20.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号