首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Materials Letters》2005,59(24-25):3062-3065
Multi-walled carbon nanotube (MWNT) reinforced carbon matrix (MWNT/C) composites have been explored using mesophase pitch as carbon matrix precursor in the present work. Results show that carbon nanotubes (CNTs)can enhance the mechanical properties of carbon matrix significantly. The maximal increment of the bending strength and stiffness of the composites, compared with the carbon matrix, are 147% and 400%, respectively. Whereas the highest in-plane thermal conductivity of the composites is 86 W m 1 K 1 which much lower than that of carbon matrix (253 W m 1 K 1).At the same time the electrical resistivity of the composites is much higher than that of matrix. It is implicated that CNTs seem to play the role of thermal/electrical barrier in the composites. FSEM micrograph of the fracture surface for the composites shows that the presence of CNTs restrains the crystallite growth of carbon matrix, which is one of factors that improve mechanical properties and decrease the conductive properties of the composites. The defects and curved shape of CNTs are also the affecting factors on the conductive properties of the composites.  相似文献   

2.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

3.
Poly(ethylene terephthalate) (PET) resin has been compounded with carbon nanotubes (CNTs) using a twin-screw extruder. The composites of 4 wt% CNTs in PET had a volume electrical resistance of 103 Ω cm, which was 12 orders lower than pure PET. The volume electrical conductivity of CNTs/PET composites with different CNTs containing followed a percolation scaling law of the form σ = κ(ρ  ρc)t well. Scanning electron microscopy (SEM) micrograph showed that CNTs had been well dispersed in PET matrix. Optical microscopy micrograph showed that discontinuity of conductive phase existed in some segments of composite fiber. Rheological behavior of CNTs/PET composites showed that the viscosity of CNTs/PET composites containing high nanotube loadings exhibited a large decrease with increasing shear frequency. Crystallization behavior of CNTs/PET composites was studied by differential scanning calorimetry (DSC) and the nucleating effect of CNTs in the cooling crystallization process of PET was confirmed. Composite fiber was prepared using the conductive CNTs/PET composites and pure PET resin by composite spinning process. Furthermore, cloth was woven by the composite fiber and common terylene with the ratio 1:3. The cloth had excellent anti-static electricity property and its charge surface density was only 0.25 μC/m2.  相似文献   

4.
《Composites Part A》2007,38(2):301-306
Aluminum composites reinforced with CNTs were fabricated by pressureless infiltration process and the tribological properties of the composites were investigated. Al has been infiltrated into CNTs–Mg–Al preform by pressureless infiltration in N2 atmosphere at 800 °C. By means of scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), it was found that CNTs are well dispersed and embedded in the Al matrix. The friction and wear behaviors of the composite were investigated using a pin-on-disk wear tester under unlubricated condition. The tests were conducted at a sliding speed of 0.1571 m/s under an applied load of 30 N. The experimental results indicated that the friction coefficient of the composite decreased with increasing the volume fraction of CNTs due to the self-lubrication and unique topological structure of CNTs. Within the range of CNTs volume fraction from 0% to 20%, the wear rate of the composite decreased steadily with the increase of CNTs content in the composite. The favorable effects of CNTs on wear resistance are attributed to their excellent mechanical properties, being well dispersed in the composite and the efficiency of the reinforcement of CNTs.  相似文献   

5.
Carbon/carbon composites containing zirconium were prepared using chopped carbon fiber, mesophase pitch and Zr powder by the traditional process including molding, carbonization, densification and graphitization. The influence of Zr on the microstructure and properties of the composites were investigated. Results show that Zr can improve the interface bonding, promote more perfect and larger crystallites and enhance the conductive/mechanical properties of the composites. The high in-plane thermal conductivity of 464 W/(m K) and excellent bending strength of 83.6 MPa was obtained for a Zr content of 13.9 wt% at heat treatment temperature(HTT) of 2500 °C. However the conductive/mechanical properties of the composites decrease dramatically for an higher HTT of 3000 °C. SEM micrograph of the fracture surface for the composites shows that lower disorder crystallite arrangement of fiber and carbon matrix come into being in the composites during HTT of 3000 °C, which should be responsible for the low properties. Correlation between the content of Zr and the microstructure and properties are discussed.  相似文献   

6.
Highly ablation resistant carbon nanotube (CNT)/phenolic composites were fabricated by the addition of low concentrations of CNTs. Tensile and compressive mechanical properties as well as ablation resistance were significantly improved by the addition of only 0.1 and 0.3 wt% of uniformly dispersed CNTs. An oxygen–kerosene-flame torch and a scanning electron microscope (SEM) were used to evaluate the ablative properties and microstructures. Thermal gravimetric analysis (TGA) revealed that the ablation rate was lower for the 0.3 wt% CNT/phenolic composites than for neat phenolic or the composite with 0.1 wt% CNTs. Ablation mechanisms for all three materials were investigated using TGA in conjunction with microstructural studies using a SEM. The microstructural studies revealed that CNTs acted as an ablation resistant phase at high temperatures, and that the uniformity of the CNT dispersion played an important role in this ablation resistance.  相似文献   

7.
Carbon nanotubes reinforced pure Al (CNT/Al) composites were produced by ball-milling and powder metallurgy. Microstructure and its evolution of the mixture powders and the fabricated composites were examined and the mechanical properties of the composites were tested. It was indicated that the CNTs were gradually dispersed into the Al matrix as ball-milling time increased and achieved a uniform dispersion after 6 h ball-milling. Further increasing the ball-milling time to 8–12 h resulted in serious damage to the CNTs. The tensile tests showed that as the ball-milling time increased, the tensile and yield strengths of the composites increased, while the elongation increased first and then decreased. The strengthening of CNTs increased significantly as the ball-milling time increased to 6 h, and then decreased when further increasing the ball-milling time. The yield strength of the composite with 6 h ball-milling increased by 42.3% compared with the matrix.  相似文献   

8.
Natural silk fiber (20%) reinforced polypropylene (PP) composites were prepared by compression molding. Tensile strength, tensile modulus, bending strength, bending modulus, impact strength and hardness of the prepared composite were found 54.7 MPa, 1826.2 MPa, 58.3 MPa, 3750.7 MPa, 17.6 kJ/m2 and 95 shore A, respectively. To improve the biodegradable character of the composite, natural rubber (NR) was blended (10%, 25%, 50% by weight) with PP. It was found that the mechanical properties of the composite decrease with increasing NR in PP (except IS which increased rather decreasing). Environmental effect on the composite and degradation in various media were investigated in this study. Gamma radiation was used to increase the mechanical properties of the prepared composites. Increase in TS and BS were maximum at 250 krad dose for silk fiber/PP, silk fiber/PP:NR (90:10), silk fiber/PP:NR (75:25) and silk fiber/PP:NR (50:50) composites.  相似文献   

9.
Polypropylene/aluminum–multi-walled carbon nanotube (PP/Al–CNT) composites were prepared by a twin-screw extruder. The morphology indicates that the CNTs are well embedded or implanted within Al-flakes rather than attached on the surface. During preparation of composites, the CNTs came apart from Al–CNT so that free CNTs as well as Al–CNT were observed in PP/Al–CNT composite. The crystallization temperatures of PP/CNT and PP/Al–CNT composites were increased from 111 °C for PP to 127 °C for the composites. The decomposition temperature increased by 55 °C for PP/CNT composite and 75 °C for PP/Al–CNT composite. The PP/Al–CNT composite showed higher thermal conductivity than PP/CNT and PP/Al-flake composites with increasing filler content. PP/Al–CNT composites showed the viscosity values between PP/CNT and PP/Al-flake composites. PP/Al–CNT composite showed higher tensile modulus and lower tensile strength with increasing filler content compared to PP/CNT and PP/Al-flake composites.  相似文献   

10.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

11.
Titanium/silica (Ti/SiO2) composites are fabricated using powder metallurgy (P/M). Nanoscale biocompatible SiO2 particles are selected as reinforcement for the Ti/SiO2 composite to enhance its biocompatibility and strength, especially when with high porosity. Effects of the SiO2 particle addition and sintering temperature on mechanical properties of the Ti/SiO2 composites are investigated. The results indicate that the mechanical property of Ti/SiO2 composites sintered at 1100 °C are better than those at 900 and 1000 °C. The strength of the Ti/SiO2 composites is significantly higher than that of pure titanium. The composite with the SiO2 content of 2 wt% sintered at 1100 °C for 4 h shows an appropriate mechanical property with a relative density of 96.5%, a compressive strength of 1566 MPa and good plasticity (an ultimate strain of 15.96%). In vitro results reveal that the Ti/SiO2 composite possesses excellent biocompatibility and cell adhesion. Osteoblast-like cells grow and spread well on the surfaces of the Ti/SiO2 composites. The Ti/SiO2 composite is a promising material for great potential used as an orthopedic implant material.  相似文献   

12.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

13.
Nanocrystalline (nc) Mg–5 wt%–Al and Mg–5 wt%–Al–10.3 wt%–Ti metal–metal composites have been synthesized by mechanical alloying (MA) for 20 h of milling duration. XRD was employed as analysis tool for the structural evolution during MA and thermal stability at elevated temperatures. Kinetics of grain growth of Mg–5 wt%–Al–10.3 wt%–Ti and Mg–5 wt%–Al systems under isothermal and isochronal annealing was investigated. The results showed that the grain growth behavior can be described by the parabolic kinetic equation of grain growth and the activation energy of mechanically alloyed metal–metal composite is higher than that of cast Mg alloy and that of its base metal of Mg–5 wt%–Al.  相似文献   

14.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

15.
Nacre is known for its superior mechanical properties due to its uniquely interlocked-layered structures. In this study, a new composite containing nacre in an Al matrix was fabricated. The composite was produced using powder metallurgy method followed by a heat treatment. Mechanical properties were tested using SEM, micro hardness tester and profilometer. Results showed that the hardness of the composites increased as the concentration of nacre increased in the composite. The hardness of a composite containing 20 wt% of nacre increased by 40% compared to pure Al. Tribological evaluation indicates that samples with 1 wt% and 5 wt% of nacre exhibited the best wear resistance. The wear mechanism changed from adhesive to abrasive wear with varying concentration of nacre. This research demonstrates that the design of mechanical properties and the control of wear mechanisms is possible through the optimization of hybrid configuration. This approach can be adapted to most conventional materials.  相似文献   

16.
The self sensing properties of cementitious composites reinforced with well dispersed carbon nanotubes and carbon nanofibers were investigated. The electrical resistance of cementitious nanocomposites with w/c = 0.3 reinforced with well dispersed carbon nanotubes (CNTs) and nanofibers (CNFs) at an amount of 0.1 wt% and 0.3 wt% of cement was experimentally determined and compared with resistivity results of nanocomposites fabricated with “as received” nanoscale fibers at the same loading. Results indicate that conductivity measurements, besides being a valuable tool in evaluating the smart properties of the nanocomposites, may provide a good correlation between the resistivity values measured and the degree of dispersion of the material in the matrix. The addition of CNTs and CNFs at different loadings was proven to induce a decrease in electrical resistance, with the nanocomposites containing 0.1 wt% CNTs yielding better electrical properties. Furthermore, conductivity measurements under cyclic compressive loading provided an insight in the piezoresistive properties of selected nanocomposites. Results confirm that nanocomposites, reinforced with 0.1 wt% CNTs and CNFs, exhibited an increased change in resistivity, which is indicative of the amplified sensitivity of the material in strain sensing.  相似文献   

17.
《Composites Science and Technology》2007,67(11-12):2564-2573
The precursor of polyimide, polyamic acid, was prepared by reacting 4,4′-oxydianiline (ODA) with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA). Unmodified, acid-modified and amine-modified multiwall carbon nanotubes (MWCNT) were separately added to the polyamic acid and heated to 300 °C to produce polyimide/carbon nanotube composite. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) microphotographs reveal that acid-modified MWCNT and amine-modified MWCNT were dispersed uniformly in the polyimide matrix. The effect of the acid and amine-modified MWCNTs on the surface and volume electrical resistivities of MWCNT/polyimide composites were investigated . The surface electrical resistivity of the nanocomposites decreased from 1.28 × 1015 Ω/cm2 (neat polyimide) to 7.59 × 106 Ω/cm2 (6.98 wt% unmodified MWCNT content). Adding MWCNTs influenced the glass transition temperatures of the nanocomposites. Modified MWCNTs significance enhanced the mechanical properties of the nanocomposites. The tensile strength of the MWCNT/polyimide composite was increased from 102 MPa (neat polyimide) 134 MPa (6.98 wt% acid modified MWCNT/polyimide composites).  相似文献   

18.
Rice husks and polypropylene were applied as the fibers and matrix, respectively, to make composites. Polypropylene-grafted maleic anhydride (PP-g-MA) and styrene ethylene butadiene styrene-grafted maleic anhydride (SEBS-g-MA) were used as coupling agents. The rice husks were also treated with NaOH, silane, or NaOH + HCl + silane to enhance the effect of the coupling agents. Using a combination of 2 wt% PP-g-MA and 1 wt% SEBS-g-MA, the impact strength of the composite increased, but the tensile strength and modulus were not reduced relative to the use of PP-g-MA alone. The three treatments – NaOH, silane and NaOH + HCl + silane – and added coupling agents improved the impact strength and decreased the moisture absorption rate of the composites except for those subjected to the alkaline treatments. The foaming results showed that adding coupling agents improved the cell structure and reduced the density of the foam.  相似文献   

19.
《Composites Science and Technology》2007,67(11-12):2282-2291
Conventional thermal and microwave curing methods were utilized to cure fly ash/epoxy composites, and the mechanical and morphological properties of the composites were evaluated. The conventional thermal curing was performed at 70 °C for 80 min while microwave curing was carried out at 240 W for 18 min in order to achieve the optimum cure of the composites, determined using Differential Scanning Calorimeter. The results suggested that the tensile and flexural moduli of the composites increased with increasing fly ash content while the effect became opposite for tensile, flexural and impact strengths, and tensile strain at break. Improved mechanical properties of the composite could be obtained by addition of N-2(aminoethyl)-3-aminopropyltrimethoxysilane coupling agent, the contents of 0.5 wt% being recommended for the optimum mechanical properties. Beyond these recommended contents, the mechanical properties greatly reduced, except for the flexural modulus. The comparative results indicated that the composites by the microwave cure consumed shorter cure time and had higher ultimate strengths (especially impact strength), and strain at break than those by the conventional thermal cure. The composites with higher tensile and flexural moduli could be obtained by the conventional thermal cure.  相似文献   

20.
《Materials Letters》2007,61(14-15):3229-3231
A multi-walled carbon nanotube (MWNTs) reinforced 2024Al composite was successfully fabricated by a procedure of mixing 2024Al powders and CNTs, cold isostatic press and hot extrusion. The damping behaviors of the composite were investigated with frequency of 0.5, 1.0, 5.0, 10, 30 Hz, at a temperature of 25–400 °C. The experimental results show that the frequency significantly affects the damping capacity of the composite when the temperature is above 230 °C; meanwhile, the damping capacity of the composite with a frequency of 0.5 Hz reaches 975 × 10 3, and the storage modulus is 82.3 GPa when the temperature is 400 °C, which shows that CNTs are a promising reinforcement for metal matrix composites to obtain high damping capabilities at an elevated temperature without sacrificing the mechanical strength and stiffness of a metal matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号